Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117584

Rapid conversion to high xanthine oxidase activity in viable Kupffer cells during hypoxia.

J S Wiezorek, D H Brown, D E Kupperman, and C A Brass

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.

Find articles by Wiezorek, J. in: PubMed | Google Scholar

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.

Find articles by Brown, D. in: PubMed | Google Scholar

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.

Find articles by Kupperman, D. in: PubMed | Google Scholar

Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.

Find articles by Brass, C. in: PubMed | Google Scholar

Published December 1, 1994 - More info

Published in Volume 94, Issue 6 on December 1, 1994
J Clin Invest. 1994;94(6):2224–2230. https://doi.org/10.1172/JCI117584.
© 1994 The American Society for Clinical Investigation
Published December 1, 1994 - Version history
View PDF
Abstract

It has been widely postulated that the central mechanism of hepatic reperfusion injury involves the conversion, during ischemia, of the enzyme xanthine dehydrogenase (XDH) to its free radical-producing form, xanthine oxidase (XOD). However, this theory has been questioned because (a) XDH to XOD conversion in whole liver occurs very slowly; (b) the cellular distribution of XDH/XOD is unclear; and (c) the direct demonstration of XDH to XOD conversion in viable cells is lacking. In this paper, we address all three issues by measuring XDH to XOD conversion and cell viability in purified populations of hepatic endothelial cells (EC), Kupffer cells (KC), and hepatocytes (HEP). Although XDH/XOD activity on a cellular basis was greater in hepatocytes (0.92 +/- 0.12 mU/10(6) cells) than ECs (0.03 +/- 0.01) or KCs (0.12 +/- 0.04), XDH + XOD specific activity was similar in all three cell types (HEP 1.85 +/- 0.10 U/g protein; EC 1.69 +/- 0.54; KC 2.30 +/- 0.22). Over 150 min of warm (37 degrees C) or 24 h of cold (4 degrees C) hypoxia, percent XOD activity increased slowly in ECs, from 21 +/- 2% (basal) to 39 +/- 3% (warm) and 49 +/- 5% (cold) and in HEPs (29 +/- 2% to 38 +/- 3% and 49 +/- 2%), but converted significantly faster in KCs (28 +/- 3% to 91 +/- 7% and 94 +/- 4%). The dramatic changes in Kupffer cell XOD during cold hypoxia occurred despite only minor changes in cell viability. When hypoxic KCs were reoxygenated after 16 h of cold hypoxia, there was a marked increase in cell death that was significantly blocked by allopurinol. These data suggest that significant conversion to the free radical-producing state occurs within viable KCs, and that Kupffer cell XOD may play an important role in mediating reperfusion injury in the liver.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2224
page 2224
icon of scanned page 2225
page 2225
icon of scanned page 2226
page 2226
icon of scanned page 2227
page 2227
icon of scanned page 2228
page 2228
icon of scanned page 2229
page 2229
icon of scanned page 2230
page 2230
Version history
  • Version 1 (December 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts