Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Myelin in multiple sclerosis is developmentally immature.
M A Moscarello, D D Wood, C Ackerley, C Boulias
M A Moscarello, D D Wood, C Ackerley, C Boulias
View: Text | PDF
Research Article

Myelin in multiple sclerosis is developmentally immature.

  • Text
  • PDF
Abstract

The etiology of multiple sclerosis (MS) is considered to involve genetic, environmental, infective, and immunological factors which affect the integrity of a normally assembled myelin sheath, either directly or indirectly resulting in demyelination. In a correlative study involving protein chemical, mass spectrometric, and electron microscopic techniques we have determined that myelin obtained from victims of MS is arrested at the level of the first growth spurt (within the first 6 yr of life) and is therefore developmentally immature. The data supporting this conclusion include (a) the pattern of microheterogeneity of myelin basic protein (MBP); (b) the NH2-terminal acylation of the least cationic component of MBP ("C-8"); (c) the phase transition temperature (Tc) of myelin isolated from victims of MS correlated with the increased proportion of the least cationic component of MBP; and (d) immunogold electron microscopy using an antibody specific for "C-8" showed that the distribution of gold particles in a 2-yr-old infant was similar to the distribution found in a victim of MS. We postulate that this developmentally immature myelin is more susceptible to degradation by one or a combination of factors mentioned above, providing the initial antigenic material to the immune system.

Authors

M A Moscarello, D D Wood, C Ackerley, C Boulias

×

Full Text PDF

Download PDF (2.48 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts