Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117076

Interleukin 1 alpha causes rapid activation of cytosolic phospholipase A2 by phosphorylation in rat mesangial cells.

J Gronich, M Konieczkowski, M H Gelb, R A Nemenoff, and J R Sedor

Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.

Find articles by Gronich, J. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.

Find articles by Konieczkowski, M. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.

Find articles by Gelb, M. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.

Find articles by Nemenoff, R. in: PubMed | Google Scholar

Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44109.

Find articles by Sedor, J. in: PubMed | Google Scholar

Published March 1, 1994 - More info

Published in Volume 93, Issue 3 on March 1, 1994
J Clin Invest. 1994;93(3):1224–1233. https://doi.org/10.1172/JCI117076.
© 1994 The American Society for Clinical Investigation
Published March 1, 1994 - Version history
View PDF
Abstract

We have shown previously that interleukin 1 (IL-1) stimulates eicosanoid production in glomerular mesangial cells (MC) by de novo synthesis of a 14-kD, group II phospholipase A2 (PLA2). IL-1-stimulated prostaglandin E2 synthesis precedes expression of this enzyme, suggesting that another PLA2 isoform must be more rapidly activated. In the presence but not absence of calcium inophore, [3H]arachidonate release is increased significantly as early as 5 min after addition of IL-1, and IL-1 concurrently stimulates a Ca(2+)-dependent phospholipase activity, which was characterized as the cytosolic form of PLA2 (cPLA2). IL-1 does not alter either cPLA2 mRNA expression or mass in serum-stimulated MC, suggesting that cPLA2 activity is increased by a posttranslational modification. IL-1 treatment for 30 min doubles 32P incorporation into immunoprecipitable cPLA2 protein, concordant with the increase in enzyme activity. Immunoblot analysis of extracts derived from IL-1-treated (30 min) cells demonstrates a decreased mobility of cPLA2, and treatment of MC lysates with acid phosphatase significantly reduces cytokine-activated cPLA2 activity, further indicating that IL-1 stimulates phosphorylation of the enzyme. IL-1 treatment (24 h) of serum-deprived MC doubled cPLA2 mRNA, protein, and activity. In summary, IL-1 increases cPLA2 activity in a biphasic, time-dependent manner both by posttranslational modification and de novo synthesis. We consider cPLA2 activation a key step in IL-1-stimulated synthesis of pro-inflammatory, lipid mediators, and an integral event in the phenotypic responses induced in target cells by this cytokine.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1224
page 1224
icon of scanned page 1225
page 1225
icon of scanned page 1226
page 1226
icon of scanned page 1227
page 1227
icon of scanned page 1228
page 1228
icon of scanned page 1229
page 1229
icon of scanned page 1230
page 1230
icon of scanned page 1231
page 1231
icon of scanned page 1232
page 1232
icon of scanned page 1233
page 1233
Version history
  • Version 1 (March 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts