Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Involvement of the tyrosinase gene in the deposition of cardiac lipofuscin in mice. Association with aortic fatty streak development.
J H Qiao, … , M C Fishbein, A J Lusis
J H Qiao, … , M C Fishbein, A J Lusis
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2386-2393. https://doi.org/10.1172/JCI116844.
View: Text | PDF
Research Article

Involvement of the tyrosinase gene in the deposition of cardiac lipofuscin in mice. Association with aortic fatty streak development.

  • Text
  • PDF
Abstract

Lipofuscin pigment, a terminal oxidation product, accumulates within cells during the normal aging process and under certain pathological conditions. We have analyzed a genetic cross between two inbred mouse strains, BALB/cJ and a subline of C57BL/6J, which differ in lipofuscin deposition. A comparison of the segregation pattern of cardiac lipofuscin with the albino locus (c) on mouse chromosome 7 revealed complete concordance. Analysis of spontaneous mutants of the tyrosinase gene, encoded by the albino locus, confirmed that the tyrosinase gene itself controls lipofuscin formation. Genetic analysis of other strains indicated that one or more additional genes cab contribute to the inheritance of lipofuscin. We also present evidence for an association between cardiac lipofuscin deposition and aortic fatty streak development in the mouse.

Authors

J H Qiao, C L Welch, P Z Xie, M C Fishbein, A J Lusis

×

Full Text PDF | Download (2.53 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts