Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans.
S Dinneen, … , J Miles, R Rizza
S Dinneen, … , J Miles, R Rizza
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2283-2290. https://doi.org/10.1172/JCI116832.
View: Text | PDF
Research Article

Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans.

  • Text
  • PDF
Abstract

Glucocorticoid concentrations vary throughout the day. To determine whether an increase in cortisol similar to that present during sleep is of physiologic significance in humans, we studied the disposition of a mixed meal when the nocturnal rise in cortisol was mimicked or prevented using metyrapone plus either a variable or constant hydrocortisone infusion. When glucose concentrations were matched with a glucose infusion, hepatic glucose release (2.6 +/- 0.2 vs. 1.5 +/- 0.4 nmol/kg per 6 h) was higher (P < 0.05) while glucose disappearance (5.9 +/- 0.3 vs. 7.3 +/- 0.9 mmol/kg per 6 h) and forearm arteriovenous glucose difference (64 +/- 24 vs. 231 +/- 62 mmol/dl per 6 h) were lower (P < 0.05) during the variable than basal infusion. The greater hepatic response during the variable cortisol infusion was mediated (at least in part) by inhibition of insulin and stimulation of glucagon secretion as reflected by lower (P < 0.05) C-peptide (0.29 +/- 0.01 vs. 0.38 +/- 0.04 mmol/liter per 6 h) and higher (P < 0.05) glucagon (42.7 +/- 2.0 vs. 39.3 +/- 1.8 ng/ml per 6 h) concentrations. In contrast, the decreased rates of glucose uptake appeared to result from a state of "physiologic" insulin resistance. The variable cortisol infusion also increased (P < 0.05) postprandial palmitate appearance as well as palmitate, beta-hydroxybutyrate, and alanine concentrations, suggesting stimulation of lipolysis, ketogenesis, and proteolysis. We conclude that the circadian variation in cortisol concentration is of physiologic significance in normal humans.

Authors

S Dinneen, A Alzaid, J Miles, R Rizza

×

Full Text PDF | Download (1.60 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts