Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Molecular analysis of patient and carrier genes with congenital steroid 21-hydroxylase deficiency by using polymerase chain reaction and single strand conformation polymorphism.
T Tajima, … , K Nakayama, Y Fujii-Kuriyama
T Tajima, … , K Nakayama, Y Fujii-Kuriyama
Published November 1, 1993
Citation Information: J Clin Invest. 1993;92(5):2182-2190. https://doi.org/10.1172/JCI116820.
View: Text | PDF
Research Article

Molecular analysis of patient and carrier genes with congenital steroid 21-hydroxylase deficiency by using polymerase chain reaction and single strand conformation polymorphism.

  • Text
  • PDF
Abstract

Steroid 21-hydroxylase deficiency is a major cause of congenital adrenal hyperplasia and is caused by genetic impairment of this enzyme. Since approximately 80% of cases are caused by point mutations of the CYP21B (CYP21A2) gene, whereas the remaining 20% are due to deletion of this gene, we used the polymerase chain reaction single strand conformation polymorphism technique for rapid and accurate diagnosis of this disease. Of 23 patients examined, 1 had a hemizygous CYP21B gene. 18 patient's genes localized their harmful mutations or deletion on both the alleles, while 4 of them found their causative mutations on one of the two alleles, and 1 failed to find any responsible mutation. All the mutations (four nucleotide substitutions) detected are also found in the CYP21A (CYP21A1) pseudogene. A mutation at the intron 2 site is most prevalent in both salt-wasting and simple virilizing forms of the disease, and accounts for 37% of the patient's genes (17/46). Pedigree analysis of these mutations revealed that the mutations (at least four of them) occurred de novo at a considerable frequency on both the paternally and maternally inherited chromosomes. This result could explain occasional discordance of the diagnosis using HLA typing with the clinical symptoms.

Authors

T Tajima, K Fujieda, K Nakayama, Y Fujii-Kuriyama

×

Full Text PDF | Download (1.96 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts