Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Top
  • View PDF
  • Download citation information
  • Send a letter
  • Terms of use
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI
  • Top
  • Abstract
  • Version history

Advertisement

Research Article Free access | 10.1172/JCI116669

39-kD protein inhibits tissue-type plasminogen activator clearance in vivo.

I Warshawsky, G Bu, and A L Schwartz

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Warshawsky, I. in: JCI | PubMed | Google Scholar

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Bu, G. in: JCI | PubMed | Google Scholar

Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Schwartz, A. in: JCI | PubMed | Google Scholar

First published August 1, 1993 - More info

Published in Volume 92, Issue 2 on August 1, 1993
J Clin Invest. 1993;92(2):937–944. https://doi.org/10.1172/JCI116669.
© 1993 The American Society for Clinical Investigation
First published August 1, 1993 - Version history
Abstract

Tissue-type plasminogen activator (t-PA) is a plasma serine protease that catalyzes the initial and rate-limiting step in the fibrinolytic cascade. t-PA is widely used as a thrombolytic agent in the treatment of acute myocardial infarction. However, its use has been impaired by its rapid hepatic clearance from the circulation following intravenous administration. Studies with both rat hepatoma MH1C1 cells (G. Bu, S. Williams, D. K. Strickland, and A. L. Schwartz, 1992. Proc. Natl. Acad. Sci. USA. 89:7427-7431) and human hepatoma HepG2 cells (G. Bu, E. A. Maksymovitch, and A. L. Schwartz. 1993. J. Biol. Chem. 28:13002-13009) have shown that binding of t-PA to its clearance receptor, the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor, is inhibited by a 39-kD protein that copurifies with this receptor. Herein we investigated whether administration of purified recombinant 39-kD protein would alter t-PA clearance in vivo. We found that intravenous administration of purified 39-kD protein to rats prolonged the plasma half-life of 125I-t-PA from 1 min to approximately 5-6 min. The plasma half-life of t-PA enzymatic activity was similarly prolonged following intravenous administration of purified 39-kD protein. In addition we found that the 39-kD protein itself was rapidly cleared from the circulation in vivo. Clearance of 125I-39-kD protein was a biphasic process with half-lives of 30 s and 9 min and the liver was the primary organ of clearance. Preadministration of excess unlabeled 39-kD protein slowed 125I-39-kD protein clearance in rats in a dose-dependent manner, suggesting that specific clearance receptors were responsible for this process. Administration of increasing doses of unlabeled 39-kD protein along with labeled 39-kD protein resulted in a decrease in the amount of labeled 39-kD protein associating with the liver and a concomitant increase in the amount of labeled 39-kD protein associating with the kidneys, indicating two clearance mechanisms exist for the 39-kD protein.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 937
page 937
icon of scanned page 938
page 938
icon of scanned page 939
page 939
icon of scanned page 940
page 940
icon of scanned page 941
page 941
icon of scanned page 942
page 942
icon of scanned page 943
page 943
icon of scanned page 944
page 944
Version history
  • Version 1 (August 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a letter
  • Terms of use
  • Standard abbreviations
  • Article usage
  • Citations to this article
  • Share this article
  • Need Help? E-mail the JCI

Go to:

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts