Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116546

Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium.

J R Spivey, S F Bronk, and G J Gores

Department of Internal Medicine, Mayo Medical School, Rochester, Minnesota 55905.

Find articles by Spivey, J. in: PubMed | Google Scholar

Department of Internal Medicine, Mayo Medical School, Rochester, Minnesota 55905.

Find articles by Bronk, S. in: PubMed | Google Scholar

Department of Internal Medicine, Mayo Medical School, Rochester, Minnesota 55905.

Find articles by Gores, G. in: PubMed | Google Scholar

Published July 1, 1993 - More info

Published in Volume 92, Issue 1 on July 1, 1993
J Clin Invest. 1993;92(1):17–24. https://doi.org/10.1172/JCI116546.
© 1993 The American Society for Clinical Investigation
Published July 1, 1993 - Version history
View PDF
Abstract

Chenodeoxycholate is toxic to hepatocytes, and accumulation of chenodeoxycholate in the liver during cholestasis may potentiate hepatocellular injury. However, the mechanism of hepatocellular injury by chenodeoxycholate remains obscure. Our aim was to determine the mechanism of cytotoxicity by chenodeoxycholate in rat hepatocytes. At a concentration of 250 microM, glycochenodeoxycholate was more toxic than either chenodeoxycholate or taurochenodeoxycholate. Cellular ATP was 86% depleted within 30 min after addition of glycochenodeoxycholate. Fructose, a glycolytic substrate, maintained ATP concentrations at 50% of the initial value and protected against glycochenodeoxycholate cytotoxicity. ATP depletion in the absence of a glycolytic substrate suggested impairment of mitochondrial function. Indeed, glycochenodeoxycholate inhibited state 3 respiration in digitonin-permeabilized cells in a dose-dependent manner. After ATP depletion, a sustained rise in cytosolic free calcium (Cai2+) was observed. Removal of extracellular Ca2+ abolished the rise in Cai2+, decreased cellular proteolysis, and protected against cell killing by glycochenodeoxycholate. The results suggest that glycochenodeoxycholate cytotoxicity results from ATP depletion followed by a subsequent rise in Cai2+. The rise in Cai2+ leads to an increase in calcium-dependent degradative proteolysis and, ultimately, cell death. We conclude that glycochenodeoxycholate causes a bioenergetic form of lethal cell injury dependent on ATP depletion analogous to the lethal cell injury of anoxia.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 17
page 17
icon of scanned page 18
page 18
icon of scanned page 19
page 19
icon of scanned page 20
page 20
icon of scanned page 21
page 21
icon of scanned page 22
page 22
icon of scanned page 23
page 23
icon of scanned page 24
page 24
Version history
  • Version 1 (July 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts