Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116542

Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans.

P Vollenweider, L Tappy, D Randin, P Schneiter, E Jéquier, P Nicod, and U Scherrer

Department of Internal Medicine B, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Find articles by Vollenweider, P. in: JCI | PubMed | Google Scholar

Department of Internal Medicine B, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Find articles by Tappy, L. in: JCI | PubMed | Google Scholar

Department of Internal Medicine B, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Find articles by Randin, D. in: JCI | PubMed | Google Scholar

Department of Internal Medicine B, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Find articles by Schneiter, P. in: JCI | PubMed | Google Scholar

Department of Internal Medicine B, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Find articles by Jéquier, E. in: JCI | PubMed | Google Scholar

Department of Internal Medicine B, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Find articles by Nicod, P. in: JCI | PubMed | Google Scholar

Department of Internal Medicine B, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Find articles by Scherrer, U. in: JCI | PubMed | Google Scholar

Published July 1, 1993 - More info

Published in Volume 92, Issue 1 on July 1, 1993
J Clin Invest. 1993;92(1):147–154. https://doi.org/10.1172/JCI116542.
© 1993 The American Society for Clinical Investigation
Published July 1, 1993 - Version history
View PDF
Abstract

Euglycemic hyperinsulinemia evokes both sympathetic activation and vasodilation in skeletal muscle, but the mechanism remains unknown. To determine whether insulin per se or insulin-induced stimulation of carbohydrate metabolism is the main excitatory stimulus, we performed, in six healthy lean subjects, simultaneous microneurographic recordings of muscle sympathetic nerve activity, plethysmographic measurements of calf blood flow, and calorimetric determinations of carbohydrate oxidation rate. Measurements were made during 2 h of: (a) insulin/glucose infusion (hyperinsulinemic [6 pmol/kg per min] euglycemic clamp), (b) exogenous glucose infusion at a rate matched to that attained during protocol a, and (c) exogenous fructose infusion at the same rate as for glucose infusion in protocol b. For a comparable rise in carbohydrate oxidation, insulin/glucose infusion that resulted in twofold greater increases in plasma insulin concentrations than did glucose infusion alone, evoked twofold greater increases in both muscle sympathetic nerve activity and calf blood flow. Fructose infusion, which increased carbohydrate oxidation comparably, but had only a minor effect on insulinemia, did not stimulate either muscle sympathetic nerve activity or calf blood flow. These observations suggest that in humans hyperinsulinemia per se, rather than insulin-induced stimulation of carbohydrate metabolism, is the main mechanism that triggers both sympathetic activation and vasodilation in skeletal muscle.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 147
page 147
icon of scanned page 148
page 148
icon of scanned page 149
page 149
icon of scanned page 150
page 150
icon of scanned page 151
page 151
icon of scanned page 152
page 152
icon of scanned page 153
page 153
icon of scanned page 154
page 154
Version history
  • Version 1 (July 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts