Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Cytokine-induced expression of a nitric oxide synthase in rat renal tubule cells.
B A Markewitz, … , J R Michael, D E Kohan
B A Markewitz, … , J R Michael, D E Kohan
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):2138-2143. https://doi.org/10.1172/JCI116439.
View: Text | PDF
Research Article

Cytokine-induced expression of a nitric oxide synthase in rat renal tubule cells.

  • Text
  • PDF
Abstract

Nitric oxide (NO.) has been implicated in the regulation of renal vascular tone and tubular sodium transport. While the endothelial cell is a well known source of NO(.), recent studies suggest that tubular epithelial cells may constitutively generate NO(.). An inducible isoform of nitric oxide synthase which produces far greater quantities of NO. exists in some cell types. We sought to determine whether kidney epithelial cells exposed to cytokines could express an inducible nitric oxide synthase. Primary cultures of rat proximal tubule and inner medullary collecting duct cells generated NO. on exposure to TNF-alpha and IFN-gamma. NO. production by both cell types was inhibited by NG-monomethyl-L-arginine; this inhibition was partially reversed by the addition of excess L-arginine. Stimulation of kidney epithelial cells with TNF-alpha and IFN-gamma dramatically increased the level of inducible nitric oxide synthase mRNA. In summary, renal proximal tubule and inner medullary collecting duct cells can produce NO. via expression of an inducible isoform of nitric oxide synthase.

Authors

B A Markewitz, J R Michael, D E Kohan

×

Full Text PDF | Download (1.38 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts