Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116406

Connexin43 mediates direct intercellular communication in human osteoblastic cell networks.

R Civitelli, E C Beyer, P M Warlow, A J Robertson, S T Geist, and T H Steinberg

Division of Endocrinology and Bone and Mineral Diseases, Jewish Hospital of St. Louis, Missouri 63110.

Find articles by Civitelli, R. in: JCI | PubMed | Google Scholar

Division of Endocrinology and Bone and Mineral Diseases, Jewish Hospital of St. Louis, Missouri 63110.

Find articles by Beyer, E. in: JCI | PubMed | Google Scholar

Division of Endocrinology and Bone and Mineral Diseases, Jewish Hospital of St. Louis, Missouri 63110.

Find articles by Warlow, P. in: JCI | PubMed | Google Scholar

Division of Endocrinology and Bone and Mineral Diseases, Jewish Hospital of St. Louis, Missouri 63110.

Find articles by Robertson, A. in: JCI | PubMed | Google Scholar

Division of Endocrinology and Bone and Mineral Diseases, Jewish Hospital of St. Louis, Missouri 63110.

Find articles by Geist, S. in: JCI | PubMed | Google Scholar

Division of Endocrinology and Bone and Mineral Diseases, Jewish Hospital of St. Louis, Missouri 63110.

Find articles by Steinberg, T. in: JCI | PubMed | Google Scholar

Published May 1, 1993 - More info

Published in Volume 91, Issue 5 on May 1, 1993
J Clin Invest. 1993;91(5):1888–1896. https://doi.org/10.1172/JCI116406.
© 1993 The American Society for Clinical Investigation
Published May 1, 1993 - Version history
View PDF
Abstract

We have examined cell coupling and expression of gap junction proteins in monolayer cultures of cells derived from human bone marrow stromal cells (BMC) and trabecular bone osteoblasts (HOB), and in the human osteogenic sarcoma cell line, SaOS-2. Both HOB and BMC cells were functionally coupled, since microinjection of Lucifer yellow resulted in dye transfer to neighboring cells, with averages of 3.4 +/- 2.8 (n = 131) and 8.1 +/- 9.3 (n = 51) coupled cells per injection, respectively. In contrast, little diffusion of Lucifer yellow was observed in SaOS-2 monolayers (1.4 +/- 1.8 coupled cells per injection, n = 100). Dye diffusion was inhibited by octanol (3.8 mM), an inhibitor of gap junctional communication. All of the osteoblastic cells expressed mRNA for connexin43 and connexin45, but not for connexins 26, 32, 37, 40, or 46. Whereas all of the osteoblastic cells expressed similar quantities of mRNA for connexin43, the poorly coupled SaOS-2 cells produced significantly less Cx43 protein than either HOB or BMC, as assessed by immunofluorescence and immunoprecipitation. Conversely, more Cx45 mRNA was expressed by SaOS-2 cells than by HOB or BMC. Thus, intercellular coupling in normal and transformed human osteoblastic cells correlates with the level of expression of Cx43, which appears to mediate intercellular communication in these cells. Gap junctional communication may serve as a means by which osteoblasts can work in synchrony and propagate locally generated signals throughout the skeletal tissue.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1888
page 1888
icon of scanned page 1889
page 1889
icon of scanned page 1890
page 1890
icon of scanned page 1891
page 1891
icon of scanned page 1892
page 1892
icon of scanned page 1893
page 1893
icon of scanned page 1894
page 1894
icon of scanned page 1895
page 1895
icon of scanned page 1896
page 1896
Version history
  • Version 1 (May 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts