Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Connexin43 mediates direct intercellular communication in human osteoblastic cell networks.
R Civitelli, … , S T Geist, T H Steinberg
R Civitelli, … , S T Geist, T H Steinberg
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):1888-1896. https://doi.org/10.1172/JCI116406.
View: Text | PDF
Research Article

Connexin43 mediates direct intercellular communication in human osteoblastic cell networks.

  • Text
  • PDF
Abstract

We have examined cell coupling and expression of gap junction proteins in monolayer cultures of cells derived from human bone marrow stromal cells (BMC) and trabecular bone osteoblasts (HOB), and in the human osteogenic sarcoma cell line, SaOS-2. Both HOB and BMC cells were functionally coupled, since microinjection of Lucifer yellow resulted in dye transfer to neighboring cells, with averages of 3.4 +/- 2.8 (n = 131) and 8.1 +/- 9.3 (n = 51) coupled cells per injection, respectively. In contrast, little diffusion of Lucifer yellow was observed in SaOS-2 monolayers (1.4 +/- 1.8 coupled cells per injection, n = 100). Dye diffusion was inhibited by octanol (3.8 mM), an inhibitor of gap junctional communication. All of the osteoblastic cells expressed mRNA for connexin43 and connexin45, but not for connexins 26, 32, 37, 40, or 46. Whereas all of the osteoblastic cells expressed similar quantities of mRNA for connexin43, the poorly coupled SaOS-2 cells produced significantly less Cx43 protein than either HOB or BMC, as assessed by immunofluorescence and immunoprecipitation. Conversely, more Cx45 mRNA was expressed by SaOS-2 cells than by HOB or BMC. Thus, intercellular coupling in normal and transformed human osteoblastic cells correlates with the level of expression of Cx43, which appears to mediate intercellular communication in these cells. Gap junctional communication may serve as a means by which osteoblasts can work in synchrony and propagate locally generated signals throughout the skeletal tissue.

Authors

R Civitelli, E C Beyer, P M Warlow, A J Robertson, S T Geist, T H Steinberg

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts