Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effect of insulin on system A amino acid transport in human skeletal muscle.
R C Bonadonna, … , C Cobelli, R A DeFronzo
R C Bonadonna, … , C Cobelli, R A DeFronzo
Published February 1, 1993
Citation Information: J Clin Invest. 1993;91(2):514-521. https://doi.org/10.1172/JCI116230.
View: Text | PDF
Research Article

Effect of insulin on system A amino acid transport in human skeletal muscle.

  • Text
  • PDF
Abstract

Transmembrane transport of neutral amino acids in skeletal muscle is mediated by at least four different systems (system A, ASC, L, and Nm), and may be an important target for insulin's effects on amino acid and protein metabolism. We have measured net amino acid exchanges and fractional rates of inward (k(in), min-1) and outward (kout, min-1) transmembrane transport of 2-methylaminoisobutyric acid (MeAIB, a nonmetabolizable amino acid analogue, specific for system A amino acid transport) in forearm deep tissues (skeletal muscle), by combining the forearm perfusion technique and a novel dual tracer ([1-H3]-D-mannitol and 2-[1-14C]-methylaminoisobutyric acid) approach for measuring in vivo the activity of system A amino acid transport. Seven healthy lean subjects were studied. After a baseline period, insulin was infused into the brachial artery to achieve local physiologic hyperinsulinemia (76 +/- 8 microU/ml vs 6.4 +/- 1.6 microU/ml in the basal period, P < 0.01) without affecting systemic hormone and substrate concentrations. Insulin switched forearm amino acid exchange from a net output (-2,630 +/- 1,100 nmol/min per kig of forearm tissue) to a net uptake (1,610 +/- 600 nmol/min per kg, P < 0.01 vs baseline). Phenylalanine and tyrosine balances simultaneously shifted from a net output (-146 +/- 47 and -173 +/- 34 nmol/min per kg, respectively) to a zero balance (16.3 +/- 51 for phenylalanine and 15.5 +/- 14.3 nmol/min per kg for tyrosine, P < 0.01 vs baseline for both), showing that protein synthesis and breakdown were in equilibrium during hyperinsulinemia. Net negative balances of alanine, methionine, glycine, threonine and asparagine (typical substrates for system A amino acid transport) also were decreased by insulin, whereas serine (another substrate for system A transport) shifted from a zero balance to net uptake. Insulin increased k(in) of MeAIB from a basal value of 11.8.10(-2) +/- 1.7.10(-2).min-1 to 13.7.10(-2) +/- 2.2.10(-2).min-1 (P < 0.02 vs the postabsorptive value), whereas kout was unchanged. We conclude that physiologic hyperinsulinemia stimulates the activity of system A amino acid transport in human skeletal muscle, and that this effect may play a role in determining the overall concomitant response of muscle amino acid/protein metabolism to insulin.

Authors

R C Bonadonna, M P Saccomani, C Cobelli, R A DeFronzo

×

Full Text PDF

Download PDF (1.76 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts