Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Sequence analyses of three immunoglobulin G anti-virus antibodies reveal their utilization of autoantibody-related immunoglobulin Vh genes, but not V lambda genes.
D F Huang, … , D A Carson, P P Chen
D F Huang, … , D A Carson, P P Chen
Published December 1, 1992
Citation Information: J Clin Invest. 1992;90(6):2197-2208. https://doi.org/10.1172/JCI116105.
View: Text | PDF
Research Article

Sequence analyses of three immunoglobulin G anti-virus antibodies reveal their utilization of autoantibody-related immunoglobulin Vh genes, but not V lambda genes.

  • Text
  • PDF
Abstract

Accumulated sequence analyses of the antibody repertoire have revealed that most autoantibodies and developmentally regulated antibodies share a small set of germline Ig-variable region (V) genes. The findings have prompted speculation that certain autoantibodies are of developmental importance and may be instrumental in maintaining homeostasis of the adult antibody repertoire. In order to evaluate this hypothesis critically, it is first necessary to determine the V gene usage in human antibodies against foreign substances. Unfortunately, only a few such antibodies have had their heavy and light chains characterized. To rectify the situation, we adapted the anchored polymerase chain reaction to clone and analyze rapidly the expressed V genes for three anti-virus IgG antibodies. The results show that all three heavy chain V (Vh) genes are highly homologous to the known autoantibody-related Vh genes. In contrast, two light chain V (VL) genes of the V lambda 1 subgroup are similar to a non-autoantibody-related germline V lambda 1 gene. Taken together with the reported Vh and VL sequences of several antibodies against viruses and bacteria, the data show that many antipathogen antibodies may use the same small set of Vh genes that encode autoantibodies, but diverse VL genes that are distinct from autoantibody-related VL genes. Thus, only a small portion of the potentially functional germline Vh genes are used recurrently to generate most antibodies in a normal antibody repertoire, regardless of their reactivities with either self or non-self.

Authors

D F Huang, T Olee, Y Masuho, Y Matsumoto, D A Carson, P P Chen

×

Full Text PDF

Download PDF (2.02 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts