Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Glutaric acidemia type II. Heterogeneity in beta-oxidation flux, polypeptide synthesis, and complementary DNA mutations in the alpha subunit of electron transfer flavoprotein in eight patients.
E Freneaux, … , A Shires, W J Rhead
E Freneaux, … , A Shires, W J Rhead
Published November 1, 1992
Citation Information: J Clin Invest. 1992;90(5):1679-1686. https://doi.org/10.1172/JCI116040.
View: Text | PDF
Research Article

Glutaric acidemia type II. Heterogeneity in beta-oxidation flux, polypeptide synthesis, and complementary DNA mutations in the alpha subunit of electron transfer flavoprotein in eight patients.

  • Text
  • PDF
Abstract

We studied metabolic, polypeptide and genetic variation in eight glutaric acidemia type II (GA II) patients with electron transfer flavoprotein (ETF) deficiency. As measured by 3H-fatty acid oxidations in fibroblasts, beta-oxidation pathway flux correlated well with clinical phenotypes. In six patients with severe neonatal onset GA II, oxidation of [9,10(n)-3H]-palmitate ranged from 2% to 22% of control and of [9,10(n)-3H]myristate, from 2% to 26% of control. Of two patients with late onset GA II, one had intermediate residual activities with these substrates and the other normal activities. Radiolabeling and immunoprecipitation studies revealed that three of the six neonatal onset GA II patients had greatly diminished or absent alpha- and beta-ETF subunits, consistent with a failure to assemble a stable heterodimer. Another neonatal onset patient showed normal synthesis of beta-ETF but decreased synthesis of alpha-ETF. Two neonatal onset and two late onset GA II patients showed normal synthesis of both subunits. Analysis of the pre-alpha-ETF coding sequence revealed seven different mutations in the six patients with neonatal onset GA II. The most common mutation was a methionine for threonine substitution at codon 266 found in four unrelated patients, while all the other mutations were seen in single patients. No mutations were detected in the two patients with late onset GA II.

Authors

E Freneaux, V C Sheffield, L Molin, A Shires, W J Rhead

×

Full Text PDF | Download (1.91 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts