Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expression.
G Cacalano, … , L Saiman, A Prince
G Cacalano, … , L Saiman, A Prince
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):1866-1874. https://doi.org/10.1172/JCI115791.
View: Text | PDF
Research Article

Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expression.

  • Text
  • PDF
Abstract

The pathogenesis of Pseudomonas aeruginosa infection in cystic fibrosis (CF) is a complex process attributed to specific characteristics of both the host and the infecting organism. In this study, the properties of the PAO1 neuraminidase were examined to determine its potential role in facilitating Pseudomonas colonization of the respiratory epithelium. The PAO1 neuraminidase was 1000-fold more active than the Clostridium perfringens enzyme in releasing sialic acid from respiratory epithelial cells. This effect correlated with increased adherence of PAO1 to epithelial cells after exposure to PAO1 neuraminidase and was consistent with in vitro studies demonstrating Pseudomonas adherence to asialoganglioside receptors. The regulation of the neuraminidase gene nanA was examined in Pseudomonas and as cloned and expressed in Escherichia coli. In hyperosmolar conditions neuraminidase expression was increased by 50% (P less than 0.0004), an effect which was OmpR dependent in E. coli. In Pseudomonas the osmotic regulation of neuraminidase production was dependent upon algR1 and algR2, genes involved in the transcriptional activation of algD, which is responsible for the mucoid phenotype of Pseudomonas and pathognomonic for chronic infection in CF. Under the hyperosmolar conditions postulated to exist in the CF lung, nanA is likely to be expressed to facilitate the initial adherence of Pseudomonas to the respiratory tract.

Authors

G Cacalano, M Kays, L Saiman, A Prince

×

Full Text PDF | Download (1.95 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts