Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115774

Investigation of human giardiasis by karyotype analysis.

S H Korman, S M Le Blancq, R J Deckelbaum, and L H Van der Ploeg

Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York 10032.

Find articles by Korman, S. in: PubMed | Google Scholar

Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York 10032.

Find articles by Le Blancq, S. in: PubMed | Google Scholar

Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York 10032.

Find articles by Deckelbaum, R. in: PubMed | Google Scholar

Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York 10032.

Find articles by Van der Ploeg, L. in: PubMed | Google Scholar

Published June 1, 1992 - More info

Published in Volume 89, Issue 6 on June 1, 1992
J Clin Invest. 1992;89(6):1725–1733. https://doi.org/10.1172/JCI115774.
© 1992 The American Society for Clinical Investigation
Published June 1, 1992 - Version history
View PDF
Abstract

The patterns of transmission of Giardia lamblia and the potential contribution of strain differences to pathogenicity of infection is poorly understood. We used pulsed field gradient gel electrophoresis (PFGE) to separate chromosome-sized DNA molecules of 22 stocks of G. lamblia isolated from 13 individuals (6 symptomatic, 7 asymptomatic) living in Jerusalem. PGFE gels run under a variety of conditions revealed up to nine ethidium bromide-stained bands per isolate ranging in size from 0.7 to greater than 3 megabasepairs. Relative staining intensities indicated that some bands contained multiple chromosomes. Major differences in the number, size, and intensity of bands allowed a clear differentiation of the karyotypes of isolates from each of the different individuals. This is in contrast to previous studies where the karyotype of different isolates have been strikingly homogeneous. Hybridization of Southern blots with surface antigen, beta-tubulin, and ribosomal RNA genes revealed that these gene families were distributed to different sized chromosomes amongst the different isolates. PFGE thus revealed major differences in the karyotypes of different G. lamblia isolates that were obtained over a short period of time from a relatively confined geographic area. In contrast, karyotypes of isolates established either by direct cultivation of duodenal trophozoites or by excystation of stool cysts from the same individuals were almost identical. Also, isolates from the same individuals obtained over a prolonged period of time revealed only minor differences in their karyotype, suggesting that recurrent infection can be caused by genetically similar organisms. We conclude that chronic giardiasis can result from recurrence of occult infection or reinfection from a common source.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1725
page 1725
icon of scanned page 1726
page 1726
icon of scanned page 1727
page 1727
icon of scanned page 1728
page 1728
icon of scanned page 1729
page 1729
icon of scanned page 1730
page 1730
icon of scanned page 1731
page 1731
icon of scanned page 1732
page 1732
icon of scanned page 1733
page 1733
Version history
  • Version 1 (June 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts