Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues.
L B Jakeman, … , C A Altar, N Ferrara
L B Jakeman, … , C A Altar, N Ferrara
Published January 1, 1992
Citation Information: J Clin Invest. 1992;89(1):244-253. https://doi.org/10.1172/JCI115568.
View: Text | PDF
Research Article

Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues.

  • Text
  • PDF
Abstract

Vascular endothelial growth factor (VEGF) is a secreted heparin-binding mitogen; its growth-promoting activity is limited to vascular endothelial cells in vitro and VEGF also stimulates angiogenesis in vivo. To identify target cells for VEGF and investigate the potential physiological role of this factor, iodinated recombinant human VEGF (125I-rhVEGF) was used for in vitro ligand autoradiography on tissue sections from adult rats. 125I-rhVEGF exhibited saturable, displaceable binding to a single class of sites with high affinity and low capacity in all tissues and organs examined. Colocalization of 125I-rhVEGF binding with Factor VIII-like immunoreactivity demonstrated binding sites associated with vascular endothelial cells of both fenestrated and nonfenestrated microvessels and the endothelium of large vessels, while no displaceable binding was evident on nonendothelial cells. Specific binding was associated with quiescent as well as proliferating vessels. These findings support the hypothesis that VEGF plays a specific role in both the maintenance and in the induction of growth of vascular endothelial cells.

Authors

L B Jakeman, J Winer, G L Bennett, C A Altar, N Ferrara

×

Full Text PDF | Download (4.79 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts