Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115545

A restriction fragment of the C2 gene is a unique marker for C2 deficiency and the uncommon C2 allele C2*B (a marker for type 1 diabetes).

S Simon, Z Awdeh, R D Campbell, P Ronco 2nd, S J Brink, G S Eisenbarth, E J Yunis, and C A Alper

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Simon, S. in: JCI | PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Awdeh, Z. in: JCI | PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Campbell, R. in: JCI | PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Ronco, P. in: JCI | PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Brink, S. in: JCI | PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Eisenbarth, G. in: JCI | PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Yunis, E. in: JCI | PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Alper, C. in: JCI | PubMed | Google Scholar

Published December 1, 1991 - More info

Published in Volume 88, Issue 6 on December 1, 1991
J Clin Invest. 1991;88(6):2142–2145. https://doi.org/10.1172/JCI115545.
© 1991 The American Society for Clinical Investigation
Published December 1, 1991 - Version history
View PDF
Abstract

There are three common C2 protein alleles in caucasians, C2*C, C2*B, and C2*Q0, with allele frequencies of 0.96, 0.03, and 0.01, as well as Sst I RFLP variants of 2.75, 2.7, 2.65, 2.55, and 2.4 kb, with frequencies of 0.017, 0.533, 0.358, 0.017, and 0.075. Thus, C2*C is informatively split by the RFLP. Of 94 nonrandomly ascertained caucasian complotypes, 77 contained C2*C, four contained C2*Q0, and 13 had C2*B. None of the C2*C-containing complotypes carried the 2.75 kb Sst I fragment and all of the complotypes with C2*B or C2*Q0 carried it. All of the C2*Q0 alleles were associated with C4A*4, C4B*2 in the complotype S042 as previously reported. C2*B was usually (9/13) in the complotype SB42, occasionally (1/13 each) in SB45, SB41, SB(4,3)0, and SB31. Thus, the association of the C2 2.75-kb fragment was with C2*B and C2*Q0, not with C4A*4, C4B*2, or even C4A*4 alone. The complotype SC42 was associated with the 2.65-kb Sst I fragment in four of five instances and in a single example with the 2.7-kb fragment. C2*B and C2*Q0 possibly had a common evolutionary ancestor complotype which carried the 2.75-kb Sst I fragment, and BF*S, C4A*4, and C4B*2. C2*B (particularly as the haplotype HLA-Bw62, SB42, DR4) is associated with type 1 diabetes but C2*Q0 is protective.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2142
page 2142
icon of scanned page 2143
page 2143
icon of scanned page 2144
page 2144
icon of scanned page 2145
page 2145
Version history
  • Version 1 (December 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts