Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Water deprivation stimulates transforming growth factor-beta 2 accumulation in the juxtaglomerular apparatus of mouse kidney.
S Horikoshi, … , M B Sporn, P E Klotman
S Horikoshi, … , M B Sporn, P E Klotman
Published December 1, 1991
Citation Information: J Clin Invest. 1991;88(6):2117-2122. https://doi.org/10.1172/JCI115541.
View: Text | PDF
Research Article

Water deprivation stimulates transforming growth factor-beta 2 accumulation in the juxtaglomerular apparatus of mouse kidney.

  • Text
  • PDF
Abstract

Transforming growth factor-beta (TGF-beta) modulates the growth and differentiation of many cells and often functions in an autocrine or paracrine fashion. The myoepithelial cells of the renal juxtaglomerular apparatus (JGA) synthesize and secrete renin. Under conditions which chronically stimulate renin production, the JGA undergoes hypertrophy and hyperplasia. The molecular factors responsible for these changes in the JGA have not been identified. In the present study, plasma renin activity was stimulated in the mouse by water deprivation. Using immunoperoxidase staining with specific antibodies against TGF-beta 1, beta 2, and beta 3, we found increased TGF-beta 2 accumulation in the JGA and interlobular arteries. Immunostaining with renin antiserum demonstrated colocalization of TGF-beta 2 and renin. TGF-beta 1 and beta 3 expression was not different between control and water-deprived mice. Our results suggest that in the setting of water deprivation, TGF-beta 2 is localized in a manner which would allow it to act either as a growth factor for or as a phenotypic modulator of the JGA and renal arterioles.

Authors

S Horikoshi, B K McCune, P E Ray, J B Kopp, M B Sporn, P E Klotman

×

Full Text PDF | Download (2.82 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts