Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Fatty acids in the portal vein of the rat regulate hepatic insulin clearance.
J Svedberg, … , U Smith, P Björntorp
J Svedberg, … , U Smith, P Björntorp
Published December 1, 1991
Citation Information: J Clin Invest. 1991;88(6):2054-2058. https://doi.org/10.1172/JCI115534.
View: Text | PDF
Research Article

Fatty acids in the portal vein of the rat regulate hepatic insulin clearance.

  • Text
  • PDF
Abstract

The effects of FFA on hepatic insulin clearance were studied in the in situ perfused rat liver. Clearance decreased with increasing body weight (age) of the rats. When FFA were added to the perfusate a 40% reduction of hepatic removal of insulin was found over the normal, physiological range (less than 1,000 mumol/liter), less pronounced in heavier rats. When perfusion was started with high concentrations of FFA, inhibition was rapidly reversible, a phenomenon again blunted in heavier rats. In contrast to FFA, different glucose concentrations in the perfusate did not affect the hepatic insulin uptake in the presence of FFA within physiological concentrations. Thus, hepatic clearance of insulin is proportional to rat weight (age) and portal FFA concentrations. Other studies have recently shown that fatty acids inhibit insulin binding, degradation, and function in isolated rat hepatocytes, and that hepatic clearance is inversely dependent on hepatic triglyceride concentrations, both inhibitions reversible by prevention of fatty acid oxidation. It is suggested that the diminished hepatic clearance of insulin in heavier (older) rats is at least partly due to their relative obesity and increased hepatic triglyceride contents. This effect as well as that of portal FFA is probably mediated via fatty acid oxidation in the liver. This mechanism may have implications for the regulation of hepatic metabolism, and peripheral insulin concentrations.

Authors

J Svedberg, G Strömblad, A Wirth, U Smith, P Björntorp

×

Full Text PDF | Download (1.13 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts