Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115401

Metabolism of prostaglandin F2 alpha in Zellweger syndrome. Peroxisomal beta-oxidation is a major importance for in vivo degradation of prostaglandins in humans.

U Diczfalusy, B F Kase, S E Alexson, and I Björkhem

Department of Clinical Chemistry I, Huddinge University Hospital, Sweden.

Find articles by Diczfalusy, U. in: PubMed | Google Scholar

Department of Clinical Chemistry I, Huddinge University Hospital, Sweden.

Find articles by Kase, B. in: PubMed | Google Scholar

Department of Clinical Chemistry I, Huddinge University Hospital, Sweden.

Find articles by Alexson, S. in: PubMed | Google Scholar

Department of Clinical Chemistry I, Huddinge University Hospital, Sweden.

Find articles by Björkhem, I. in: PubMed | Google Scholar

Published September 1, 1991 - More info

Published in Volume 88, Issue 3 on September 1, 1991
J Clin Invest. 1991;88(3):978–984. https://doi.org/10.1172/JCI115401.
© 1991 The American Society for Clinical Investigation
Published September 1, 1991 - Version history
View PDF
Abstract

We have recently shown in vitro that the peroxisomal fraction of a rat liver homogenate has the highest capacity to beta-oxidize prostaglandins. In order to evaluate the relative importance of peroxisomes for this conversion also in vivo, we administered [3H]prostaglandin F2 alpha to an infant suffering from Zellweger syndrome, a congenital disorder characterized by the absence of intact peroxisomes. As a control, labeled compound was administered to two healthy volunteers. Urine was collected, fractionated on a SEP-PAK C18 cartridge, and subjected to reversed-phase high-performance liquid chromatography. The Zellweger patient was found to excrete prostaglandin metabolites considerably less polar than those of the control subjects. The major urinary metabolite in the control subjects was practically absent in the urine from the Zellweger patient. The major urinary prostaglandin F2 alpha metabolite from the Zellweger patient was identified as an omega-oxidized C20-prostaglandin, 9,11-dihydroxy-15-oxoprost-5-ene-1,20-dioic acid. The major urinary prostaglandin F2 alpha metabolite from the control subjects had chromatographic properties of a tetranor (C16) prostaglandin, in accordance with earlier published data. The present results, in combination with our previous in vitro data, indicate that peroxisomal beta-oxidation is of major importance for in vivo chain shortening of prostaglandins.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 978
page 978
icon of scanned page 979
page 979
icon of scanned page 980
page 980
icon of scanned page 981
page 981
icon of scanned page 982
page 982
icon of scanned page 983
page 983
icon of scanned page 984
page 984
Version history
  • Version 1 (September 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts