Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Simultaneous synthesis and degradation of rat liver glycogen. An in vivo nuclear magnetic resonance spectroscopic study.
M David, … , J E King, E J Barrett
M David, … , J E King, E J Barrett
Published August 1, 1990
Citation Information: J Clin Invest. 1990;86(2):612-617. https://doi.org/10.1172/JCI114752.
View: Text | PDF
Research Article

Simultaneous synthesis and degradation of rat liver glycogen. An in vivo nuclear magnetic resonance spectroscopic study.

  • Text
  • PDF
Abstract

Using 13C nuclear magnetic resonance spectroscopic methods we examined in vivo the synthesis of liver glycogen during the infusion of D-[1-13C]glucose and the turnover of labeled glycogen during subsequent infusion of D-[1-13C]glucose. In fasted rats the processes of glycogen synthesis and degradation were observed to occur simultaneously with the rate of synthesis much greater than degradation leading to net glycogen synthesis. In fed rats, incorporation of infused D-[1-13C]glucose occurred briskly; however, over 2 h there was no net glycogen accumulated. Degradation of labeled glycogen was greater in the fed versus the fasted rats (P less than 0.001), and the lack of net glycogen synthesis in fed rats was due to degradation and synthesis occurring at similar rates throughout the infusion period. There was no indication that suppression of phosphorylase a or subsequent activation of glycogen synthase was involved in modulation of the flux of tracer into liver glycogen. We conclude that in both fed and fasted rats, glycogen synthase and phosphorylase are active simultaneously and the levels of liver glycogen reached during refeeding are determined by the balance between ongoing synthetic and degradative processes.

Authors

M David, W A Petit, M R Laughlin, R G Shulman, J E King, E J Barrett

×

Full Text PDF

Download PDF (1.24 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts