Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Beta-adrenergic stimulation of adenine nucleotide catabolism and purine release in human adipocytes.
H Kather
H Kather
Published January 1, 1990
Citation Information: J Clin Invest. 1990;85(1):106-114. https://doi.org/10.1172/JCI114399.
View: Text | PDF
Research Article

Beta-adrenergic stimulation of adenine nucleotide catabolism and purine release in human adipocytes.

  • Text
  • PDF
Abstract

The effects of beta-adrenergic agonists on ATP utilization and adenine nucleotide breakdown in human adipocytes were examined. The catecholamine-induced increase in cAMP was associated with an enhancement of adenine nucleotide catabolism resulting in an increase in release of inosine and hypoxanthine which can not be reutilized for adenine nucleotide synthesis. Therefore, one-third of total cellular adenine nucleotides were irreversibly lost in the presence of 1 mumol/liter isoproterenol. The catecholamine-induced increase in purine release could be blocked by phosphodiesterase inhibitors, suggesting that cAMP is the main precursor of purines in the presence of beta-adrenergic agonists. However, epinephrine (in the simultaneous presence of the alpha 2-adrenergic blocking agent, yohimbine) and isoproterenol were 10 times more potent in stimulating purine release than in elevating cAMP. In addition, purine release ceased when cAMP was still markedly increased, suggesting a compartmentation of the cyclic nucleotide and/or involvement of the hormone-sensitive, low Km cAMP phosphodiesterase. The results document that white fat cells have an enormous potential for dissipating energy, and demonstrate that the pathway involving cAMP formation and hydrolysis constitutes the principle route of adenine nucleotide catabolism in the presence of beta-adrenergic agonists.

Authors

H Kather

×

Full Text PDF | Download (1.84 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts