Advertisement
Research Article Free access | 10.1172/JCI113772
Department of Medicine, Montefiore Hospital, Pittsburgh, PA 15213.
Find articles by Vazquez, J. in: JCI | PubMed | Google Scholar
Department of Medicine, Montefiore Hospital, Pittsburgh, PA 15213.
Find articles by Paul, H. in: JCI | PubMed | Google Scholar
Department of Medicine, Montefiore Hospital, Pittsburgh, PA 15213.
Find articles by Adibi, S. in: JCI | PubMed | Google Scholar
Published November 1, 1988 - More info
Previously we showed that hypocaloric amounts of glucose reduce leucine catabolism while an isocaloric amount of fat does not (1985. J. Clin. Invest. 76:737.). This study was designed to investigate whether the same difference exists when the entire caloric need is provided either as glucose or lipid. Rats were maintained for 3 d on total parenteral nutrition (350 cal/kg per d), after which the infusion of amino acids was discontinued and rats received the same amount of calories entirely as glucose or lipid for three more days. A third group of rats was infused with saline for 3 d. In comparison to glucose, lipid infusion resulted in higher urinary nitrogen excretion (55 +/- 3 vs. 37 +/- 2 mg N/24 h, P less than 0.05), muscle concentrations of tyrosine (95 +/- 8 vs. 42 +/- 8 microM, P less than 0.01), and leucine (168 +/- 19 vs. 84 +/- 16 microM, P less than 0.01), activity of BCKA dehydrogenase in muscle (2.2 +/- 0.2 vs. 1.4 +/- 0.04 nmol/mg protein per 30 min, P less than 0.05), and whole body rate of leucine oxidation (3.3 +/- 0.5 vs. 1.4 +/- 0.2 mumol/100 g per h, P less than 0.05). However, all these parameters were significantly lower in lipid-infused than starved rats. There was no significant difference between leucine incorporation into liver and muscle proteins of lipid and glucose-infused rats. On the other hand, starved rats showed a lower leucine incorporation into liver proteins. The data show that under conditions of adequate caloric intake lipid has an inhibitory effect on leucine catabolism but not as great as that of glucose. The mechanism of this difference may be related to a lesser inhibition of muscle protein degradation by lipid than glucose, thereby increasing the leucine pool, which in turn stimulates leucine oxidation.
Images.