Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113758

Impaired insulin-stimulated muscle glycogen synthase activation in vivo in man is related to low fasting glycogen synthase phosphatase activity.

D Freymond, C Bogardus, M Okubo, K Stone, and D Mott

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona 85016.

Find articles by Freymond, D. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona 85016.

Find articles by Bogardus, C. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona 85016.

Find articles by Okubo, M. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona 85016.

Find articles by Stone, K. in: JCI | PubMed | Google Scholar

Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona 85016.

Find articles by Mott, D. in: JCI | PubMed | Google Scholar

Published November 1, 1988 - More info

Published in Volume 82, Issue 5 on November 1, 1988
J Clin Invest. 1988;82(5):1503–1509. https://doi.org/10.1172/JCI113758.
© 1988 The American Society for Clinical Investigation
Published November 1, 1988 - Version history
View PDF
Abstract

Insulin-mediated glycogen synthase activity in skeletal muscle correlates with the rate of insulin-mediated glycogen deposition and is reduced in human subjects with insulin resistance. To assess the role of glycogen synthase phosphatase as a possible mediator of reduced glycogen synthase activity, we studied 30 Southwestern American Indians with a broad range of insulin action in vivo. Percutaneous biopsies of the vastus lateralis muscle were performed before and during a 440-min euglycemic clamp at plasma insulin concentrations of 89 +/- 5 and 1,470 +/- 49 microU/ml (mean +/- SEM); simultaneous glucose oxidation was determined by indirect calorimetry. After insulin stimulation, glycogen synthase activity was correlated with the total and nonoxidative glucose disposal at both low (r = 0.73, P less than 0.0001; r = 0.68, P less than 0.0001) and high (r = 0.75, P less than 0.0001; r = 0.74, P less than 0.0001) plasma insulin concentrations. Fasting muscle glycogen synthase phosphatase activity was correlated with both total and nonoxidative glucose disposal rates at the low (r = 0.48, P less than 0.005; r = 0.41, P less than 0.05) and high (r = 0.47, P less than 0.05; r = 0.43, P less than 0.05) plasma insulin concentrations. In addition, fasting glycogen synthase phosphatase activity was correlated with glycogen synthase activity after low- (r = 0.47, P less than 0.05) and high- (r = 0.50, P less than 0.01) dose insulin stimulations. These data suggest that the decreased insulin-stimulated glucose disposal and reduced glycogen synthase activation observed in insulin resistance could be secondary to a low fasting glycogen synthase phosphatase activity.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1503
page 1503
icon of scanned page 1504
page 1504
icon of scanned page 1505
page 1505
icon of scanned page 1506
page 1506
icon of scanned page 1507
page 1507
icon of scanned page 1508
page 1508
icon of scanned page 1509
page 1509
Version history
  • Version 1 (November 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts