Abstract

The aminophospholipids phosphatidylethanolamine (PE) and phosphatidylserine (PS) are the major phospholipids contained in the cytoplasmic leaflet of the human erythrocyte (RBC) plasma membrane and are largely confined to that leaflet over the entire RBC lifespan. In particular, PS, which comprises approximately 13% of total RBC membrane phospholipids, is normally restricted entirely to the cytoplasmic leaflet. However, molecular mechanisms that regulate this asymmetric distribution of phospholipids are largely unknown. We examined elliptocytic RBCs that completely lacked protein 4.1 (HE [4.1 degrees]), but contained normal amounts of all other peripheral membrane proteins, and found approximately 10% of total membrane PS was accessible in the exoplasmic leaflet of these membranes. Inside out vesicles (IOVs) derived from HE [4.1 degrees] RBCs bound fewer PS liposomes than did IOVs derived from normal RBCs. Normal IOVs that were depleted of proteins 2.1 (ankyrin), 4.1, and 4.2 bound fewer PS liposomes similar to HE [4.1 degrees] IOVs, and repletion with protein 4.1 restored PS liposome binding to control levels. Addition of purified protein 4.1 to PS liposomes resulted in saturable binding with the extent of binding being proportional to the liposome PS content. Our data suggests that human RBC protein 4.1 is a PS binding protein and may be involved in the molecular mechanisms that stabilize PS in the cytoplasmic leaflet of the human RBC plasma membrane.

Authors

A C Rybicki, R Heath, B Lubin, R S Schwartz

×

Other pages: