Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Analysis of HLA-D micropolymorphism by a simple procedure: RNA oligonucleotide hybridization.
C Ucla, … , J Gorski, B Mach
C Ucla, … , J Gorski, B Mach
Published October 1, 1987
Citation Information: J Clin Invest. 1987;80(4):1155-1159. https://doi.org/10.1172/JCI113173.
View: Text | PDF
Research Article

Analysis of HLA-D micropolymorphism by a simple procedure: RNA oligonucleotide hybridization.

  • Text
  • PDF
Abstract

Recent progress in the molecular genetics of HLA class II antigens has revealed the existence of multiple loci and of a large degree of polymorphism, with more individual alleles than was expected. An accurate detection and analysis of this extensive polymorphism is essential for optimal HLA typing for transplantation and for a reevaluation of HLA-disease association. Because of the limitations of the current typing methods, including restriction fragment length polymorphisms, we have proposed a DNA typing procedure based on hybridization with loci- and allele-specific oligonucleotides. Here we present a much simpler way of analyzing class II micropolymorphism down to the level of single nucleotide differences. RNA oligonucleotide typing (ROT) relies on RNA dot blots and requires 10-20 ml of blood. It is shown that with appropriate oligonucleotide probes, ROT can reliably and unambiguously identify any polymorphism at any of the HLA loci, including new alleles, not identified with previous methods. This illustrates the importance of oligonucleotide typing to optimize HLA matching, in particular for transplantation involving unrelated donors.

Authors

C Ucla, J J van Rood, J Gorski, B Mach

×

Full Text PDF | Download (1.06 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts