Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Studies on the mechanism of omega-hydroxylation of platelet 12-hydroxyeicosatetraenoic acid (12-HETE) by unstimulated neutrophils.
A J Marcus, … , M J Broekman, C von Schacky
A J Marcus, … , M J Broekman, C von Schacky
Published January 1, 1987
Citation Information: J Clin Invest. 1987;79(1):179-187. https://doi.org/10.1172/JCI112781.
View: Text | PDF
Research Article

Studies on the mechanism of omega-hydroxylation of platelet 12-hydroxyeicosatetraenoic acid (12-HETE) by unstimulated neutrophils.

  • Text
  • PDF
Abstract

Stimulated platelets, in the presence or absence of aspirin, synthesize significant quantities of 12-hydroxyeicosatetraenoic acid (12-HETE), which is chemotactic and chemokinetic, and enhances mononuclear cell procoagulant activity. During a cell-cell interaction between stimulated platelets and unstimulated neutrophils, platelet 12-HETE is metabolized to 12,20-dihydroxyeicosatetraenoic acid (12,20-DiHETE) by neutrophils. Characteristics of the enzyme system in unstimulated neutrophils responsible for this omega-hydroxylation were investigated. A broad range of cytochrome P-450 inhibitors, as well as leukotriene B4, blocked formation of 12,20-DiHETE. Owing largely to released proteases, neutrophil homogenization abolished activity. Pretreatment with diisopropylfluorophosphate preserved activity in neutrophil homogenates. omega-Hydroxylation of 12-HETE was confined solely to the microsomal fraction. Specific activity increased 6.6-fold compared with neutrophil sonicates. The electron donor NADPH was a required cofactor. These results indicate that the enzyme in unstimulated human neutrophils, which metabolizes 12-HETE from stimulated platelets to 12,20-DiHETE in this cell-cell interaction, is a cytochrome P-450 monooxygenase.

Authors

A J Marcus, L B Safier, H L Ullman, N Islam, M J Broekman, C von Schacky

×

Full Text PDF

Download PDF (1.69 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts