Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Use of an X-linked human neutrophil marker to estimate timing of lyonization and size of the dividing stem cell pool.
E S Buescher, … , D W Alling, J I Gallin
E S Buescher, … , D W Alling, J I Gallin
Published October 1, 1985
Citation Information: J Clin Invest. 1985;76(4):1581-1584. https://doi.org/10.1172/JCI112140.
View: Text | PDF
Research Article

Use of an X-linked human neutrophil marker to estimate timing of lyonization and size of the dividing stem cell pool.

  • Text
  • PDF
Abstract

In families with X-linked chronic granulomatous disease (CGD), heterozygous females have two stable populations of polymorphonuclear leukocytes (PMN) in their blood; one normal, the other, deficient in oxygen metabolism. The two types of PMN can be distinguished by the ability or lack of ability to reduce nitroblue tetrazolium dye. The variation in the percent normal PMN among 11 CGD heterozygotes was shown to follow a binomial distribution based on eight independent trials and a chance of success of 50%. This is consistent with the occurrence of X-chromosome inactivation (lyonization) when eight embryonic founder cells for the hematopoietic system are present. Serial determinations of the percent normal PMN in individual heterozygotes showed very limited variability (standard deviations ranged from 2.0% to 5.2%) most of which could be ascribed to experimental error. An estimate of the remaining variation (residual variance) was introduced into a well-known formula to calculate the appropriate number of pluripotent stem cells necessary to support hematopoiesis and a figure exceeding 400 was obtained. Thus, the data indicate that in humans there is a highly polyclonal system of hematopoiesis.

Authors

E S Buescher, D W Alling, J I Gallin

×

Full Text PDF | Download (645.27 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts