Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112019

Effects of exercise training on in vivo insulin action in individual tissues of the rat.

D E James, E W Kraegen, and D J Chisholm

Find articles by James, D. in: JCI | PubMed | Google Scholar

Find articles by Kraegen, E. in: JCI | PubMed | Google Scholar

Find articles by Chisholm, D. in: JCI | PubMed | Google Scholar

Published August 1, 1985 - More info

Published in Volume 76, Issue 2 on August 1, 1985
J Clin Invest. 1985;76(2):657–666. https://doi.org/10.1172/JCI112019.
© 1985 The American Society for Clinical Investigation
Published August 1, 1985 - Version history
View PDF
Abstract

It has previously been suggested that exercise training leads to increased whole body insulin sensitivity. However, the specific tissues and metabolic pathways involved have not been examined in vivo. By combining the euglycemic clamp with administration of glucose tracers, [3H]2-deoxyglucose (2DG), [14C]glucose, and [3H]glucose, in vivo insulin action at the whole body level and within individual tissues has been assessed in exercise-trained (ET, running 1 h/d for 7 wk) and sedentary control rats at four insulin doses. Whole body insulin sensitivity was significantly increased in ET. In addition, the skeletal muscles, soleus, red and white gastrocnemius, extensor digitorum longus (EDL), and diaphragm all showed increased sensitivity of insulin-stimulated 2DG uptake with training. With the exception of EDL, no significant difference in insulin-mediated glycogen synthesis between control and ET could be found. Therefore, the increased insulin-induced 2DG uptake observed in muscle following training is apparently directed towards glucose oxidation. In ET animals, adipose tissue exhibited a significant increase in insulin-mediated 2DG uptake and [14C]glucose incorporation into free fatty acids but there was no difference from control in any parameters measured in lung or liver. EDL and white gastrocnemius, which are not primarily involved during exercise of this type, also demonstrated increased insulin sensitivity following training. In conclusion, exercise training results in a marked increase in whole body insulin sensitivity related mainly to increased glucose oxidation in skeletal muscle. This effect may be mediated by systemic as well as local factors and is likely to be of therapeutic value in pathological conditions exhibiting insulin resistance.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 657
page 657
icon of scanned page 658
page 658
icon of scanned page 659
page 659
icon of scanned page 660
page 660
icon of scanned page 661
page 661
icon of scanned page 662
page 662
icon of scanned page 663
page 663
icon of scanned page 664
page 664
icon of scanned page 665
page 665
icon of scanned page 666
page 666
Version history
  • Version 1 (August 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts