Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Effects of exercise training on in vivo insulin action in individual tissues of the rat.
D E James, … , E W Kraegen, D J Chisholm
D E James, … , E W Kraegen, D J Chisholm
Published August 1, 1985
Citation Information: J Clin Invest. 1985;76(2):657-666. https://doi.org/10.1172/JCI112019.
View: Text | PDF
Research Article

Effects of exercise training on in vivo insulin action in individual tissues of the rat.

  • Text
  • PDF
Abstract

It has previously been suggested that exercise training leads to increased whole body insulin sensitivity. However, the specific tissues and metabolic pathways involved have not been examined in vivo. By combining the euglycemic clamp with administration of glucose tracers, [3H]2-deoxyglucose (2DG), [14C]glucose, and [3H]glucose, in vivo insulin action at the whole body level and within individual tissues has been assessed in exercise-trained (ET, running 1 h/d for 7 wk) and sedentary control rats at four insulin doses. Whole body insulin sensitivity was significantly increased in ET. In addition, the skeletal muscles, soleus, red and white gastrocnemius, extensor digitorum longus (EDL), and diaphragm all showed increased sensitivity of insulin-stimulated 2DG uptake with training. With the exception of EDL, no significant difference in insulin-mediated glycogen synthesis between control and ET could be found. Therefore, the increased insulin-induced 2DG uptake observed in muscle following training is apparently directed towards glucose oxidation. In ET animals, adipose tissue exhibited a significant increase in insulin-mediated 2DG uptake and [14C]glucose incorporation into free fatty acids but there was no difference from control in any parameters measured in lung or liver. EDL and white gastrocnemius, which are not primarily involved during exercise of this type, also demonstrated increased insulin sensitivity following training. In conclusion, exercise training results in a marked increase in whole body insulin sensitivity related mainly to increased glucose oxidation in skeletal muscle. This effect may be mediated by systemic as well as local factors and is likely to be of therapeutic value in pathological conditions exhibiting insulin resistance.

Authors

D E James, E W Kraegen, D J Chisholm

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts