Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ontogenesis of taurocholate transport by rat ileal brush border membrane vesicles.
J A Barnard, … , F K Ghishan, F A Wilson
J A Barnard, … , F K Ghishan, F A Wilson
Published March 1, 1985
Citation Information: J Clin Invest. 1985;75(3):869-873. https://doi.org/10.1172/JCI111785.
View: Text | PDF
Research Article

Ontogenesis of taurocholate transport by rat ileal brush border membrane vesicles.

  • Text
  • PDF
Abstract

Developmental aspects of taurocholate transport into ileal brush border membrane vesicles were studied in 2-wk-old (suckling), 3-wk-old (weanling), and 6-wk-old (adolescent) rats. Taurocholate uptake (picomoles per milligram protein) into brush border membrane vesicles prepared from 2-wk-old rats was similar under Na+ and K+ gradient conditions (outside greater than inside). By contrast, uptake in 3- and 6-wk-old rats was significantly enhanced at 20 s, and at 1, 2, and 5 min of incubation in the presence of a Na+ gradient when compared with a K+ gradient incubation (P less than 0.05). Under isotope exchange conditions, a plot of active uptake velocity versus taurocholate concentration (0.10-1.0 mM) in 2-wk-old rat membrane vesicles was linear and approached the horizontal axis, suggesting the absence of active transport. However, similar plots in 3- and 6-wk-old rats described a rectangular hyperbola, indicating a Na+-dependent, saturable cotransport system. Woolf-Augustinsson-Hofstee plots of the uptake velocity versus concentration data from 3- and 6-wk-old rat brush border membrane vesicles yielded Vmax values that were not significantly different, 844 and 884 pmol uptake/mg protein per 120 s, respectively. The respective Km values were 0.59 and 0.66 mM taurocholate. The induction of an electrochemical diffusion potential by incubating K+-loaded vesicles with valinomycin did not significantly enhance taurocholate uptake in 2-, 3-, or 6-wk-old rat vesicle preparations. These data indicate that taurocholate transport into rat ileal brush border membrane vesicles is mediated by an electroneutral, sodium-coupled, cotransport system that is incompletely developed in the 2-wk-old suckling rat but fully developed by the time of weaning at 3 wk of age.

Authors

J A Barnard, F K Ghishan, F A Wilson

×

Full Text PDF

Download PDF (854.38 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts