Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111504

Role of lipoprotein-X in the pathogenesis of cholestatic hypercholesterolemia. Uptake of lipoprotein-X and its effect on 3-hydroxy-3-methylglutaryl coenzyme A reductase and chylomicron remnant removal in human fibroblasts, lymphocytes, and in the rat.

A K Walli and D Seidel

Find articles by Walli, A. in: JCI | PubMed | Google Scholar

Find articles by Seidel, D. in: JCI | PubMed | Google Scholar

Published September 1, 1984 - More info

Published in Volume 74, Issue 3 on September 1, 1984
J Clin Invest. 1984;74(3):867–879. https://doi.org/10.1172/JCI111504.
© 1984 The American Society for Clinical Investigation
Published September 1, 1984 - Version history
View PDF
Abstract

Cholestasis is accompanied by the appearance of lipoprotein-X (LP-X) in plasma. This lipoprotein has a high content of unesterified cholesterol and phospholipids and appears to be ineffective in suppressing the enhanced hepatic cholesterogenesis of cholestasis. Its role as a possible causative factor for cholestatic hypercholesterolemia was investigated. When 125I-LP-X was injected into rats, it disappeared rapidly from the circulation. Calculated on the basis of gram wet weight, spleen took up more LP-X than liver. Prior ligation of the bile duct reduced the uptake in spleen. Experiments with isolated perfused rat liver showed that nonparenchymal cells (NPC) took up over eightfold more 125I-LP-X than hepatic parenchymal cells (PC). Incubation of PC, NPC, human lymphocyte suspensions, or fibroblast cultures with LP-X showed that NPC bound more LP-X than PC or fibroblasts. Lymphocytes took up 20-fold more LP-X than PC and the activity of 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase was depressed by LP-X. Lymphocytes isolated from cholestatic patients showed low activity of this enzyme. The activity was increased by LP-X in isolated perfused livers, but suppressed in isolated microsomes. LP-X competitively inhibited the uptake of chylomicron remnants in isolated perfused livers and hepatocytes. In contrast, degradation of LDL by perfused livers, which were isolated from ethinyl estradiol-treated rats or human fibroblast cultures, remained unchanged in the presence of LP-X. The results indicate that cholesterol transported by LP-X is mainly taken up by the cells of the reticuloendothelial system. It increases the activity of hepatic HMG-CoA reductase and suppresses remnant uptake, thus emphasizing a major role of LP-X in cholestatic hypercholesterolemia.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 867
page 867
icon of scanned page 868
page 868
icon of scanned page 869
page 869
icon of scanned page 870
page 870
icon of scanned page 871
page 871
icon of scanned page 872
page 872
icon of scanned page 873
page 873
icon of scanned page 874
page 874
icon of scanned page 875
page 875
icon of scanned page 876
page 876
icon of scanned page 877
page 877
icon of scanned page 878
page 878
icon of scanned page 879
page 879
Version history
  • Version 1 (September 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts