Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Human auto-antiidiotypes regulating T cell-mediated reactivity to tetanus toxoid.
A Saxon, E Barnett
A Saxon, E Barnett
Published February 1, 1984
Citation Information: J Clin Invest. 1984;73(2):342-348. https://doi.org/10.1172/JCI111218.
View: Text | PDF
Research Article

Human auto-antiidiotypes regulating T cell-mediated reactivity to tetanus toxoid.

  • Text
  • PDF
Abstract

While investigating the effect on B cells of repetitive in vivo immunization with tetanus toxoid (TT), we observed the subsequent development of specific anergy for T cell delayed hypersensitivity (DTH) to TT. This appeared approximately 35 d after a series of five booster immunizations. Concurrently, in vitro T cell blastogenic responses were preserved. Serum obtained when the skin tests were nonreactive demonstrated a profound inhibitory activity on T cell reactivity. This activity was shown to be anti-antibody activity that was both anti-F(ab)'2 and, specifically, anti-TT F(ab)'2. It blocked binding of TT to a pool of allogeneic antibodies and also inhibited allogeneic antigen-specific T cell blastogenesis. Thus, we could identify activity in the serum of hyperimmunized individuals that appeared auto-anti-idiotypic (anti-id) and represented a single or family of major crossreacting idiotypes (id) for TT. The expression of the auto-anti-id correlated with the loss of T cell reactivity in vivo and in vitro. Subsequent examinations revealed persistent, specific cutaneous anergy beyond six months, which was then associated with a failure of T cells to react with antigen in vitro. Mixing experiments with cells from these later times and cryopreserved autologous cells obtained prior to hyperimmunization revealed there had been the development of antigen-specific T suppressor cells. Thus, in vivo DTH tolerance following hyperimmunization was associated with an inhibitory serum activity that appeared to be anti-id. Persistence of tolerance (greater than 6 mo) occurred with the development of T suppressor cells.

Authors

A Saxon, E Barnett

×

Full Text PDF | Download (1.30 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts