Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Comparison of glucosylated low density lipoprotein with methylated or cyclohexanedione-treated low density lipoprotein in the measurement of receptor-independent low density lipoprotein catabolism.
U P Steinbrecher, … , Y A Kesaniemi, R L Elam
U P Steinbrecher, … , Y A Kesaniemi, R L Elam
Published April 1, 1983
Citation Information: J Clin Invest. 1983;71(4):960-964. https://doi.org/10.1172/JCI110850.
View: Text | PDF
Research Article

Comparison of glucosylated low density lipoprotein with methylated or cyclohexanedione-treated low density lipoprotein in the measurement of receptor-independent low density lipoprotein catabolism.

  • Text
  • PDF
Abstract

We previously showed that glucosylation of lysine residues of low density lipoproteins (LDL) blocks high-affinity degradation by cultured human fibroblasts, and markedly slows LDL turnover in guinea pigs. The present studies were done to evaluate glucosylated (GLC) LDL as a tracer of receptor-independent LDL catabolism, and to compare it with two other modified LDL, methylated (MET) LDL, and cyclohexanedione (CHD)-treated LDL, which have been used previously for this purpose. Glucosylation of LDL did not affect receptor-independent degradation in vivo, as the turnover of GLC-LDL and native LDL were similar in the LDL receptor-deficient, Watanabe heritable hyperlipidemic rabbit. Each modified radiolabeled LDL preparation was injected into eight guinea pigs, and fractional catabolic rates (FCR) determined. The FCR of GLC-LDL (0.024 +/- 0.005 h-1; SD) was similar to that of MET-LDL (0.023 +/- 0.006 h-1), and approximately 22% of that of native LDL (0.105 +/- 0.02 h-1). The FCR of CHD-LDL was greater than that of the other modified LDL, and it varied depending on how soon after preparation the CHD-LDL was injected: when used within 2 h of preparation, the mean FCR was 0.044 +/- 0.007 h-1 (n = 4); when used after overnight dialysis at 4 degrees C, the mean FCR was 0.082 +/- 0.03 h-1 (n = 4). This suggests that CHD-LDL overestimates the amount of LDL degraded by receptor-independent pathways, perhaps because the CHD modification is spontaneously reversible. The present studies indicate that GLC-LDL is a useful tracer of receptor-independent LDL catabolism in animals.

Authors

U P Steinbrecher, J L Witztum, Y A Kesaniemi, R L Elam

×

Full Text PDF

Download PDF (910.30 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts