Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Tubuloglomerular Feedback and Single Nephron Function after Converting Enzyme Inhibition in the Rat
David W. Ploth, … , Ronald Lagrange, L. Gabriel Navar
David W. Ploth, … , Ronald Lagrange, L. Gabriel Navar
Published November 1, 1979
Citation Information: J Clin Invest. 1979;64(5):1325-1335. https://doi.org/10.1172/JCI109589.
View: Text | PDF
Research Article

Tubuloglomerular Feedback and Single Nephron Function after Converting Enzyme Inhibition in the Rat

  • Text
  • PDF
Abstract

Experiments were done in normal rats to assess kidney, single nephron, and tubuloglomerular feedback responses during renin-angiotensin blockade with the converting enzyme inhibitor (CEI) SQ 20881 (E. R. Squibb & Sons, Princeton, N. Y.) (3 mg/kg, per h). Converting enzyme inhibition was documented by complete blockade of vascular responses to infusions of angiotensin I (600 ng/kg). Control plasma renin activity was 12.5±2.7 ng angiotensin I/ml per h (mean±SEM) and increased sevenfold with CEI (n = 7). There were parallel increases in glomerular filtration rate from 1.08±0.05 to 1.26±0.05 ml/min and renal blood flow from 6.7±0.4 to 7.5±0.5 ml/min. During CEI infusion absolute and fractional sodium excretion were increased 10-fold. Proximal tubule and peritubular capillary pressures were unchanged. Single nephron glomerular filtration rate (SNGFR) was measured from both proximal and distal tubule collections; SNGFR based only on distal collections was significantly increased by CEI. A significant difference was observed between SNGFR values measured from proximal and distal tubule sites (6.0±1.6 nl/min) and this difference remained unchanged after CEI administration. Slight decreases in fractional absorption were suggested at micropuncture sites beyond the late proximal tubule, whereas early distal tubule flow rate was augmented by CEI. Tubuloglomerular feedback activity was assessed by measuring changes in proximal tubule stop-flow pressure (SFP) or SNGFR in response to alterations in orthograde microperfusion rate from late proximal tubule sites. During control periods, SFP was decreased 11.2±0.4 mm Hg when the perfusion rate was increased to 40 nl/min; during infusion of CEI, the same increase in perfusion rate resulted in a SFP decrement of 6.7±0.5 mm Hg (P<.001). When late proximal tubule perfusion rate was increased from 0 to 30 nl/min, SNGFR was decreased by 15.0±1.2 nl/min during control conditions, and by 11.3±1.3 nl/min during CEI infusion. Attenuation of feedback responsiveness during CEI was also observed at lower perfusion rates with both techniques. These results indicate that blockade of the renin-angiotensin system with CEI reduces the activity of the tubuloglomerular feedback mechanism which may mediate the observed renal vasodilation.

Authors

David W. Ploth, James Rudulph, Ronald Lagrange, L. Gabriel Navar

×

Full Text PDF | Download (1.69 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts