Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109548

Site of Substrate Stimulation of Jejunal Sucrase in the Rat

Martin H. Ulshen and Richard J. Grand

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Department of Medicine (Division of Gastroenterology), The Children's Hospital Medical Center, Boston, Massachusetts 02115

Find articles by Ulshen, M. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Department of Medicine (Division of Gastroenterology), The Children's Hospital Medical Center, Boston, Massachusetts 02115

Find articles by Grand, R. in: JCI | PubMed | Google Scholar

Published October 1, 1979 - More info

Published in Volume 64, Issue 4 on October 1, 1979
J Clin Invest. 1979;64(4):1097–1102. https://doi.org/10.1172/JCI109548.
© 1979 The American Society for Clinical Investigation
Published October 1, 1979 - Version history
View PDF
Abstract

To identify the site of stimulation of sucrase by a sucrose diet, changes in sucrase-specific activity of jejunal mucosa were studied after introduction of sucrose diet to carbohydrate-deprived rats. Results were correlated with simultaneous changes in villus gradients of sucrase-specific activity. Simultaneous with the introduction of sucrose diet, [3H]thymidine (100 μCi) was administered intravenously, and rates of cell migration measured during adaptation to the new diet. After a 72-h fast, rats fed sucrose diet for 6, 12, or 18 h showed no change in sucrase-specific activity in either whole mucosa or villus gradients. However, within 18-24 h after starting a sucrose diet, there was a marked rise in whole mucosal sucrase-specific activity above fasting values (99 ± 14 vs. 38 ± 4 μM glucose/min per g protein, P < 0.001) in association with the development of a region of increased activity at the lower villus (154 ± 22 vs. 60 ± 9 μM glucose/min per g protein, P < 0.02, but with no change in villus tip activity (56 ± 5 vs. 46 ± 8 μM glucose/min per g protein). Similar changes were seen in animals fed 24 h of sucrose diet after a 72-h carbohydratefree diet. Fasted animals fed sucrose diet for 36 h had increased sucrase-specific activity at the villus tip (144 ± 11 μM glucose/min per g protein) as well as at the lower villus region, and this pattern persisted at 1 wk of sucrose diet. Maximal activity patterns for isomaltase and maltase paralleled those for sucrase, but the villus gradients for lactase were unaffected by sucrose diet. The region of maximal sucrase-specific activity always coincided with or followed the leading edge of radioactivity as determined by liquid scintillation counting. Therefore, sucrose-mediated changes in sucrase activity of the jejunal mucosa in the rat appear to be initiated at the level of the crypt epithelial cell and are expressed after a latent period of 18-24 h during which these cells mature and migrate toward the villus tip.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1097
page 1097
icon of scanned page 1098
page 1098
icon of scanned page 1099
page 1099
icon of scanned page 1100
page 1100
icon of scanned page 1101
page 1101
icon of scanned page 1102
page 1102
Version history
  • Version 1 (October 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts