Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Site of Substrate Stimulation of Jejunal Sucrase in the Rat
Martin H. Ulshen, Richard J. Grand
Martin H. Ulshen, Richard J. Grand
Published October 1, 1979
Citation Information: J Clin Invest. 1979;64(4):1097-1102. https://doi.org/10.1172/JCI109548.
View: Text | PDF
Research Article

Site of Substrate Stimulation of Jejunal Sucrase in the Rat

  • Text
  • PDF
Abstract

To identify the site of stimulation of sucrase by a sucrose diet, changes in sucrase-specific activity of jejunal mucosa were studied after introduction of sucrose diet to carbohydrate-deprived rats. Results were correlated with simultaneous changes in villus gradients of sucrase-specific activity. Simultaneous with the introduction of sucrose diet, [3H]thymidine (100 μCi) was administered intravenously, and rates of cell migration measured during adaptation to the new diet. After a 72-h fast, rats fed sucrose diet for 6, 12, or 18 h showed no change in sucrase-specific activity in either whole mucosa or villus gradients. However, within 18-24 h after starting a sucrose diet, there was a marked rise in whole mucosal sucrase-specific activity above fasting values (99 ± 14 vs. 38 ± 4 μM glucose/min per g protein, P < 0.001) in association with the development of a region of increased activity at the lower villus (154 ± 22 vs. 60 ± 9 μM glucose/min per g protein, P < 0.02, but with no change in villus tip activity (56 ± 5 vs. 46 ± 8 μM glucose/min per g protein). Similar changes were seen in animals fed 24 h of sucrose diet after a 72-h carbohydratefree diet. Fasted animals fed sucrose diet for 36 h had increased sucrase-specific activity at the villus tip (144 ± 11 μM glucose/min per g protein) as well as at the lower villus region, and this pattern persisted at 1 wk of sucrose diet. Maximal activity patterns for isomaltase and maltase paralleled those for sucrase, but the villus gradients for lactase were unaffected by sucrose diet. The region of maximal sucrase-specific activity always coincided with or followed the leading edge of radioactivity as determined by liquid scintillation counting. Therefore, sucrose-mediated changes in sucrase activity of the jejunal mucosa in the rat appear to be initiated at the level of the crypt epithelial cell and are expressed after a latent period of 18-24 h during which these cells mature and migrate toward the villus tip.

Authors

Martin H. Ulshen, Richard J. Grand

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts