Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Functional characterization of left ventricular segmental responses during the initial 24 h and 1 wk after experimental canine myocardial infarction.
P Roan, … , L M Buja, J T Willerson
P Roan, … , L M Buja, J T Willerson
Published October 1, 1979
Citation Information: J Clin Invest. 1979;64(4):1074-1088. https://doi.org/10.1172/JCI109546.
View: Text | PDF
Research Article

Functional characterization of left ventricular segmental responses during the initial 24 h and 1 wk after experimental canine myocardial infarction.

  • Text
  • PDF
Abstract

Characterization of the temporal evolution of resting segmental function and inotropic reserve after coronary occlusion may be important in evaluating attempts to salvage ischemic but non-necrotic myocardium. Accordingly, we chronically implanted up to six pairs of pulse-transit piezoelectric crystals in the left ventricular myocardium of dogs to measure segmental wall thickness. Segments were separated into groups according to the loss of net systolic thickening (NET) at 5 min postocclusion of the left anterior descending coronary artery in awake, unsedated dogs. Group 1 included segments with NET values of 67--100+ (percent control); group 2 between 67 and 0; and group 3 less than 0 (paradoxical motion). 5 min after coronary occlusion, group 1 NET was 92 +/- 5% (SEM) although significant decreases occurred in NET in group 2 (36 +/- 4%) and group 3 segments (-33 +/- 5%). Between 5 min and 24 h after coronary occlusion, no further significant changes occurred in NET in groups 1, 2, and 3 crystals. Some segments underwent further functional deterioration between 24 h and 1 wk after left anterior descending coronary artery occlusion, although no overall change occurred in segments with mild to moderate ischemic dysfunction. Segments with NET less than 0 at 24 h, on the other hand, exhibited a reduction in aneurysmal bulging between 24 h and 1 wk from -41 +/- 10 to -23 +/- 11% (n = 12, P = 0.02). Inotropic reserve was assessed with postextrasystolic potentiation (PESP) in 14 dogs, and with infusions of dopamine (11 dogs), and isoproterenol (13 dogs). PESP was the most potent intervention and produced a significant augmentation in NET in group 2 crystals at 1, 2, 4, 6,8, and 24 h after coronary occlusion but only at 1 and 2 h in NET in group 3 crystals. Thus, following experimental coronary occlusion, the evolution of ischemic segmental dysfunction is dynamic and variable. A significant degree of inotropic reserve, as assessed by PESP, dopamine, and isoproterenol, exists in segments with moderate ischemic dysfunction for 24 h but for only 2 h after coronary occlusion in those segments with the most severe ischemic dysfunction. In addition, at least some segmental sites with mild to moderate ischemic dysfunction at 24 h deteriorate further between 24 h and 1 wk after experimental coronary occlusion.

Authors

P Roan, F Scales, S Saffer, L M Buja, J T Willerson

×

Full Text PDF | Download (2.89 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts