Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Termination of the Respiratory Burst in Human Neutrophils
Robert C. Jandl, … , B. Jane McMurrich, Bernard M. Babior
Robert C. Jandl, … , B. Jane McMurrich, Bernard M. Babior
Published May 1, 1978
Citation Information: J Clin Invest. 1978;61(5):1176-1185. https://doi.org/10.1172/JCI109033.
View: Text | PDF
Research Article

Termination of the Respiratory Burst in Human Neutrophils

  • Text
  • PDF
Abstract

Recent evidence has suggested that a particulate O2−-forming system is responsible for the respiratory burst in activated neutrophils. The respiratory burst is normally a transient event, lasting only 30-60 min. To investigate the mechanism by which the burst is terminated, we examined the O2−-forming activity of neutrophil particles as a function of time in the presence and absence of agents known to affect the function of intact cells. Measurements of the O2−-forming capacity of the particles against time of exposure of neutrophils to opsonized zymosan, a potent stimulating agent, revealed a rapid fall in activity when exposure was continued beyond 3 min. Exposure to zymosan under conditions in which the myeloperoxidase system was inactive (i.e., in the presence of myeloperoxidase inhibitors, or in the absence of oxygen) resulted in a substantial increase in the initial O2−-forming activity of particles from the zymosan-treated cells, but did not prevent the sharp fall in activity seen when zymosan exposure exceeded 10 min. The fall in activity was, however, prevented when activation took place in the presence of cytochalasin B (1.5 μg/ml), an agent thought to act largely by paralyzing the neutrophil through an interaction with its microfilament network.

Authors

Robert C. Jandl, Janine André-Schwartz, Linda Borges-Dubois, Ruby S. Kipnes, B. Jane McMurrich, Bernard M. Babior

×

Full Text PDF

Download PDF (2.31 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts