Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Phosphate Control and 25-Hydroxycholecalciferol Administration in Preventing Experimental Renal Osteodystrophy in the Dog
W. E. Rutherford, … , N. Bricker, E. Slatopolsky
W. E. Rutherford, … , N. Bricker, E. Slatopolsky
Published August 1, 1977
Citation Information: J Clin Invest. 1977;60(2):332-341. https://doi.org/10.1172/JCI108781.
View: Text | PDF
Research Article

Phosphate Control and 25-Hydroxycholecalciferol Administration in Preventing Experimental Renal Osteodystrophy in the Dog

  • Text
  • PDF
Abstract

Previous studies from this laboratory demonstrated that secondary hyperparathyroidism in dogs with chronic renal disease may occur, at least in part, as a consequence of the need for progressive adaptation in renal phosphorus (P) excretion that occurs as glomerular filtration rate falls. However, the studies were of relatively short duration. Moreover, no information emerged regarding a potential role of calcium malabsorption in the pathogenesis of secondary hyperparathyroidism. The short duration of the protocol did not lend itself to the study of the effect of P control or the administration of vitamin D in the pathogenesis of renal osteodystrophy. In the present studies, 14 dogs with experimental chronic renal disease were studied serially for a period of 2 yr. Each animal was studied first with two normal kidneys on an intake of P of 1,200 mg/day. Then, renal insufficiency was produced by 5/6 nephrectomy. The dogs then were divided into three groups. In group I, 1,200 mg/day P intake was administered for the full 2 yr. In group II, P intake was reduced from the initial 1,200 mg/day, in proportion to the measured fall in glomerular filtration rate, in an effort to obviate the renal adaptation in P excretion. In group III, “proportional reduction” of P intake also was employed; but in addition, 20 μg of 25(OH)D3 were administered orally three times a week.

Authors

W. E. Rutherford, P. Bordier, P. Marie, K. Hruska, H. Harter, A. Greenwalt, J. Blondin, J. Haddad, N. Bricker, E. Slatopolsky

×

Full Text PDF

Download PDF (1.51 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts