Abstract

The structure and function of the platelet surface was probed by phospholipase C (Clostridium perfringens) which hydrolyzes membrane phospholipids, particularly phosphatidylcholine. Platelet phospholipids were susceptible to phospholipase C, and extent of hydrolysis was dependent on concentration of phospholipase C and Ca++. Phospholipase C (0.15 U/ml) with Ca++ (0.55 mM) hydrolyzed 15.6% phospholipids during 5 min. Phospholipase C released platelet serotonin (5HT), ADP, and platelet factor 4. Hydrolysis of 5% phospholipids resulted in release of 70% 5HT. Platelet 5HT release was rapid, occurring within 2 min. Phospholipase C (0.2 U/ml) with Ca++ (0.55 mM) also released 10.35 nmol sotrage pool ADP/109 platelets and 63% platelet factor 4 during 3 min. Phospholipase C did not cause leakage of cytoplasmic metabolic pool ADP, since only 6.6% [3H]ADP was released. Ultrastructural analysis of phospholipase C-modified platelets showed that platelets were intact. After 2% phospholipid hydrolysis, centralization of granules and contraction of microtubules were evident. After 18% phospholipid hydrolysis, there were morphological indications of degranulation. Phospholipase C-induced phospholipid hydrolysis caused the release of ADP and 5HT since: (a) Phospholipase C purified by heating was shown to be free of protease and neuraminidase activity and capable of inducing the platelet release reaction. (b) Antitoxin (Cl. perfringens) neutralized phospholipase C-induced 5HT release which rules out a contaminant. (c) Phosphorylcholine, the hydrolysis product, did not induce platelet 5HT release. This study demonstrates that minimal hydrolysis of platelet phospholipids triggers the release reaction. Our hypothesis is that phospholipids, presumably phosphatidylcholine, are situated at or near active site or “receptor” on the platelet surface and function as the modulator for the release reaction.

Authors

Paul K. Schick, Byung P. Yu

×

Other pages: