Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Biochemical properties of human glomerular basement membrane in normal and diabetic kidneys.
N A Kefalides
N A Kefalides
Published February 1, 1974
Citation Information: J Clin Invest. 1974;53(2):403-407. https://doi.org/10.1172/JCI107573.
View: Text | PDF
Research Article

Biochemical properties of human glomerular basement membrane in normal and diabetic kidneys.

  • Text
  • PDF
Abstract

To determine the presence of any significant structural abnormalities in the glomerular basement membrane (GBM) of diabetic individuals, GBM from normal and diabetic human kidneys were isolated and analyzed chemically and structurally. The amino acid composition of the normal GBM revealed the presence of significant amounts of hydroxyproline, hydroxylysine, glycine, and carbohydrate suggesting the presence of a collagen-like protein. There was no significant increase in the amount of hydroxylysine, hydroxyproline, or in the hydroxylysine-linked glycoside glucosyl-galactose in the diabetic kidneys. There was, however, a significant decrease in the cystine and sialic acid content of GBM from diabetic kidneys. It was further shown that the alpha-chains isolated from the collagens of normal and diabetic basement membranes had similar amino acid and carbohydrate compositions. The hydroxylysine, hydroxyproline, glycine, and hexose contents were higher by 82, 56, 74, and 94%, respectively in the alpha-chains compared with the intact basement membranes from both the normal and diabetic kidneys. The results indicate that the slight increases in hydroxylysine and hexose content observed occasionally in diabetic GBM preparations are of no statistical significance and cannot be attributed to increases in the activities of enzymes which hydroxylate lysine or glycosylate hydroxylysine, respectively.

Authors

N A Kefalides

×

Full Text PDF

Download PDF (827.69 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts