Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Electrical Dose for Ventricular Defibrillation of Large and Small Animals Using Precordial Electrodes
L. A. Geddes, … , A. G. Moore, P. S. Cabler
L. A. Geddes, … , A. G. Moore, P. S. Cabler
Published January 1, 1974
Citation Information: J Clin Invest. 1974;53(1):310-319. https://doi.org/10.1172/JCI107552.
View: Text | PDF
Research Article

Electrical Dose for Ventricular Defibrillation of Large and Small Animals Using Precordial Electrodes

  • Text
  • PDF
Abstract

Electrical ventricular defibrillation of heavy subjects (over 100 kg body weight) is uncommon for the human or any animal species. This paper reports trans-chest ventricular defibrillation of subjects ranging in weight from 2.3 to 340 kg using conventional defibrillation current (heavily damped sine wave) of 0.3-30 ms duration. It was found that a body weight-to-electrical-shock strength relationship exists and can be expressed in terms of either electrical energy or peak current. For the duration of current pulse used clinically (3-10 ms), the relationship between energy requirement and body weight is expressed by the equation U = 0.73 W1.52, where U is the energy in W·s and W is the body weight in kilograms. The current relationship is I = 1.87 W0.88 where I is the peak current in amperes and W is the body weight in kilograms. The energy dose is somewhat more species and weight dependent and ranges from 0.5 to 10 W·s/kg (0.23-4.5 W·s/lb). The data obtained indicate that the peak current dose is virtually species and weight independent and is therefore a better indicator than energy for electrical defibrillation with precordial electrodes. In the duration range of 3-10 ms, the electrical dose is very nearly 1 A/kg of body weight (0.45 A/lb).

Authors

L. A. Geddes, W. A. Tacker, J. P. Rosborough, A. G. Moore, P. S. Cabler

×

Full Text PDF

Download PDF (1.06 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts