Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106973

The nature of the renal adaptation to chronic hypocapnia

F. John Gennari, Marc B. Goldstein, and William B. Schwartz

1Department of Medicine, Tufts University School of Medicine, and the Renal Laboratory of the New England Medical Center Hospitals, Boston, Massachusetts 02111

Find articles by Gennari, F. in: PubMed | Google Scholar

1Department of Medicine, Tufts University School of Medicine, and the Renal Laboratory of the New England Medical Center Hospitals, Boston, Massachusetts 02111

Find articles by Goldstein, M. in: PubMed | Google Scholar

1Department of Medicine, Tufts University School of Medicine, and the Renal Laboratory of the New England Medical Center Hospitals, Boston, Massachusetts 02111

Find articles by Schwartz, W. in: PubMed | Google Scholar

Published July 1, 1972 - More info

Published in Volume 51, Issue 7 on July 1, 1972
J Clin Invest. 1972;51(7):1722–1730. https://doi.org/10.1172/JCI106973.
© 1972 The American Society for Clinical Investigation
Published July 1, 1972 - Version history
View PDF
Abstract

Metabolic balance studies were carried out in normal dogs to define the renal mechanisms responsible for the adaptation to, and recovery from, chronic hypocapnia. A chronic reduction in arterial CO2 tension (PaCO2) of some 15 mm Hg was achieved by means of chronic exposure of the animals to 9% oxygen in an environmental chamber. The development of hypocapnia was associated with a marked suppression of net acid excretion which, together with a slight accumulation of organic acids, produced a reduction in plasma bicarbonate concentration (8 mEq/liter) that led to nearly full protection of extracellular pH (ΔH+ = - 2.5 nmoles/liter). When PaCO2 was returned to control levels, an augmentation of acid excretion restored plasma composition to normal after a brief period of “posthypocapneic metabolic acidosis.”

The changes in renal acid excretion during both adaptation and recovery were accomplished in a fashion notably different from that previously observed in chronic hypercapnia, being linked to changes in cation rather than chloride excretion. Thus, in dogs ingesting a normal NaCl diet, suppression of hydrogen ion excretion during adaptation to hypocapnia was associated with an increased excretion of sodium rather than with a retention of chloride. The fact that this loss of sodium occurred without a concomitant loss of potassium strongly suggests that the hypocapneic state specifically depressed distal sodium reabsorption; if distal sodium reabsorption had not been depressed, a reduction in proximal sodium reabsorption or a diminution in distal hydrogen ion secretion (or both) should have produced an increase in potassium excretion.

The interpretation that chronic hypocapnia diminished sodium reabsorption was supported by the finding that when renal sodium avidity was enhanced by restriction of sodium intake, acid retention was accomplished by a loss of potassium rather than of sodium. The accompanying reduction in plasma bicarbonate concentration was slightly less than that observed in dogs ingesting a normal NaCl diet, a finding probably accounted for by a slight difference in the availability of cation for excretion under the two experimental circumstances. These findings, taken together with the observation that augmented acid excretion during recovery from hypocapnia is linked to cation retention, suggest that an adequate intake of cation during both adaptation and recovery from chronic hypocapnia may be critical to the physiologic regulation of acid-base equilibrium.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1722
page 1722
icon of scanned page 1723
page 1723
icon of scanned page 1724
page 1724
icon of scanned page 1725
page 1725
icon of scanned page 1726
page 1726
icon of scanned page 1727
page 1727
icon of scanned page 1728
page 1728
icon of scanned page 1729
page 1729
icon of scanned page 1730
page 1730
Version history
  • Version 1 (July 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts