Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The in vivo pH of the extravascular space of the lung
Richard M. Effros, Francis P. Chinard
Richard M. Effros, Francis P. Chinard
Published November 1, 1969
Citation Information: J Clin Invest. 1969;48(11):1983-1996. https://doi.org/10.1172/JCI106164.
View: Text | PDF
Research Article

The in vivo pH of the extravascular space of the lung

  • Text
  • PDF
Abstract

The partition of 5,5-dimethyloxazolidine-2,4-dione (DMO) and of 11 amines between the vascular and extravascular spaces of the lung has been determined by the multiple indicator dilution technique. Four amines (nicotine, pentylamine, quinine, and benzylamine) were found to have pH-sensitive tissue to blood concentration ratios. Of these, tritiated nicotine appears to be the nost satisfactory indicator of tissue pH and values for the pH of the pulmonary extravascular space (pHe) have been calculated from the nicotine data. At an arterial pH (pHart) between 7.38 and 7.43 pHe averaged 6.69 ±0.07.

Authors

Richard M. Effros, Francis P. Chinard

×

Full Text PDF | Download (2.20 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts