Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Videos

Aaron Ciechanover

For decades, the attention of the scientific community was focused on the central dogma of biology — the decoding of the genetic information embedded in DNA. Little research was dedicated to how proteins are degraded and removed from cells. Enter onto the scene a young graduate student, Aaron Ciechanover, who with his mentor Avram Hershko, uncovered the complex and elegant ubiquitin proteolytic system. For his discovery, Dr. Ciechanover shared in the 2004 Nobel Prize in Chemistry with Hershko and Irwin Rose. Watch the complete interview for more stories about being a member of the Pontifical Academy of Sciences, the magic of “A-ha” moments, and the conflict between religion and Darwinism.


Bruce Beutler

A legend within the field of innate immunity, Dr. Bruce Beutler of the University of Texas Southwestern Medical School is best known for two seminal discoveries: identifying mouse tumor necrosis factor and discovering Toll-like receptor 4, the receptor for lipopolysaccharide. With this discovery, later rewarded with the 2011 Nobel Prize in Physiology or Medicine, we finally understood how immune cells could recognize and react to bacteria. Watch the full interview for many more stories on developing etanercept, searching landfills for sequencers, and falling in love with genetics.


Researchers characterize antibodies that block H5N1 influenza viral transmission

H5N1 avian influenza is a highly pathogenic virus that has been responsible for several outbreaks of bird flu in humans over the past decade. In previous outbreaks, the virus spread through direct contact between humans and infected birds, but was not able to spread from human to human. Recent studies in ferrets have demonstrated that mutations in the viral HA gene allow the virus to be transmitted via respiratory droplets indicate that such mutations may also make the virus transmissible between humans. In this episode, James Crowe of Vanderbilt University describes his group’s recent investigation of the ability to human H5N1 vaccines to neutralize respiratory droplet transmissible forms of the virus. Using peripheral blood mononuclear cells from vaccinated humans, Crowe and colleagues identified antibodies that recognized both wild type and respiratory droplet transmissible forms of viral HA. Structural studies were used to further characterize the motifs required for antibody recognition.  These findings indicate that the polyclonal sera currently used for vaccination can neutralize respiratory droplet transmissible forms of the virus. 


John Oates

Dr. John Oates of Vanderbilt University was central in launching the field of clinical pharmacology and gave life to the concepts of first-pass drug metabolism and interindividual variation in the way humans process drugs. Dr. Oates also made seminal discoveries on the metabolism, biosynthesis, and pharmacology of eicosanoids. Watch the full interview for many more stories about testifying before Congress and Dr. Oates' love of sailing.


Stress relief for the inner ear

Mechanosensory hair cells in the inner ear transduce mechanical stimuli into neural signals to mediate hearing and balance. Hair cell death is caused by a variety of stresses, including exposure to ototoxic drugs, which causes hearing loss for an estimated 500,000 Americans each year. Heat shock proteins (HSPs) are induced in response to cellular stress and induction of HSP70 was previously shown to protect against the ototoxic effects of aminoglycoside antibiotics. To determine the molecular mechanisms that underlie HSP70's protective effects, Lindsey May and colleagues utilized cultured utricles from adult mouse ears to examine stress responses in hair cells. They found that HSP70 was expressed by glia-like supporting cells that surround hair cells  in response to heat shock stress. Moreover, expression of HSP70 in supporting cells or application of exogenous HSP70 inhibited aminoglycoside antibiotic-induced hair cell death.  The data indicate that supporting cells protect sensory hair cells by secreting HSP70.

  • ← Previous
  • 1
  • 2
  • …
  • 48
  • 49
  • 50
  • …
  • 54
  • 55
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts