Review

Abstract

For approximately 80 years following Alzheimer’s description of the disease that bears his name, a gulf divided researchers who believed that extracellular deposits of the amyloid β (Aβ) peptide were pathogenic from those who believed that the deposits were secondary detritus. Since 1990, the discoveries of missense mutations in the Aβ peptide precursor (APP) and the APP-cleaving enzyme presenilin 1 (PS1) have enabled much progress in understanding the molecular, cellular, and tissue pathology of the aggregates that accumulate in the interstices of the brains of patients with autosomal dominant familial Alzheimer disease (AD). Clarification of the molecular basis of common forms of AD has been more elusive. The central questions in common AD focus on whether cerebral and cerebrovascular Aβ accumulation is (a) a final neurotoxic pathway, common to all forms of AD; (b) a toxic by-product of an independent primary metabolic lesion that, by itself, is also neurotoxic; or (c) an inert by-product of an independent primary neurotoxic reaction. Antiamyloid medications are entering clinical trials so that researchers can evaluate whether abolition of cerebral amyloidosis can mitigate, treat, or prevent the dementia associated with common forms of AD. Successful development of antiamyloid medications is critical for elucidating the role of Aβ in common AD.

Authors

Sam Gandy

×

Abstract

Cutaneous T cell lymphomas (CTCLs) are a heterogenous group of lymphoproliferative disorders caused by clonally derived, skin-invasive T cells. Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common types of CTCLs and are characterized by malignant CD4+/CLA+/CCR4+ T cells that also lack the usual T cell surface markers CD7 and/or CD26. As MF/SS advances, the clonal dominance of the malignant cells results in the expression of predominantly Th2 cytokines, progressive immune dysregulation in patients, and further tumor cell growth. This review summarizes recent insights into the pathogenesis and immunobiology of MF/SS and how these have shaped current therapeutic approaches, in particular the growing emphasis on enhancement of host antitumor immune responses as the key to successful therapy.

Authors

Ellen J. Kim, Stephen Hess, Stephen K. Richardson, Sara Newton, Louise C. Showe, Bernice M. Benoit, Ravi Ubriani, Carmela C. Vittorio, Jacqueline M. Junkins-Hopkins, Maria Wysocka, Alain H. Rook

×

Abstract

Melanoma is a cancer of the neural crest–derived cells that provide pigmentation to skin and other tissues. Over the past 4 decades, the incidence of melanoma has increased more rapidly than that of any other malignancy in the United States. No current treatments substantially enhance patient survival once metastasis has occurred. This review focuses on recent insights into melanoma genetics and new therapeutic approaches being developed based on these advances.

Authors

Yakov Chudnovsky, Paul A. Khavari, Amy E. Adams

×

Abstract

Gestational diabetes mellitus (GDM) is defined as glucose intolerance of various degrees that is first detected during pregnancy. GDM is detected through the screening of pregnant women for clinical risk factors and, among at-risk women, testing for abnormal glucose tolerance that is usually, but not invariably, mild and asymptomatic. GDM appears to result from the same broad spectrum of physiological and genetic abnormalities that characterize diabetes outside of pregnancy. Indeed, women with GDM are at high risk for having or developing diabetes when they are not pregnant. Thus, GDM provides a unique opportunity to study the early pathogenesis of diabetes and to develop interventions to prevent the disease.

Authors

Thomas A. Buchanan, Anny H. Xiang

×

Abstract

The prognosis of heart failure is worse than that of most cancers, but new therapeutic interventions using stem and other cell-based therapies are succeeding in the fight against it, and old drugs, with new twists, are making a comeback. Genetically engineered animal models are driving insights into the molecular mechanisms that cause hearts to fail, accelerating drug discoveries, and inspiring cell-based therapeutic interventions for both acquired and inheritable cardiac diseases.

Authors

Ivor J. Benjamin, Michael D. Schneider

×

Abstract

A constant supply of oxygen is indispensable for cardiac viability and function. However, the role of oxygen and oxygen-associated processes in the heart is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death. As oxygen is a major determinant of cardiac gene expression, and a critical participant in the formation of ROS and numerous other cellular processes, consideration of its role in the heart is essential in understanding the pathogenesis of cardiac dysfunction.

Authors

Frank J. Giordano

×

Abstract

There is growing evidence that the altered production and/or spatiotemporal distribution of reactive oxygen and nitrogen species creates oxidative and/or nitrosative stresses in the failing heart and vascular tree, which contribute to the abnormal cardiac and vascular phenotypes that characterize the failing cardiovascular system. These derangements at the integrated system level can be interpreted at the cellular and molecular levels in terms of adverse effects on signaling elements in the heart, vasculature, and blood that subserve cardiac and vascular homeostasis.

Authors

Joshua M. Hare, Jonathan S. Stamler

×

Abstract

Factors that render patients with cardiovascular disease at high risk for heart failure remain incompletely defined. Recent insights into molecular genetic causes of myocardial diseases have highlighted the importance of single-gene defects in the pathogenesis of heart failure. Through analyses of the mechanisms by which a mutation selectively perturbs one component of cardiac physiology and triggers cell and molecular responses, studies of human gene mutations provide a window into the complex processes of cardiac remodeling and heart failure. Knowledge gleaned from these studies shows promise for defining novel therapeutic targets for genetic and acquired causes of heart failure.

Authors

Hiroyuki Morita, Jonathan Seidman, Christine E. Seidman

×

Abstract

In broad terms, there are 3 types of cardiac hypertrophy: normal growth, growth induced by physical conditioning (i.e., physiologic hypertrophy), and growth induced by pathologic stimuli. Recent evidence suggests that normal and exercise-induced cardiac growth are regulated in large part by the growth hormone/IGF axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive cardiac growth is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phospholipase C pathway, leading to an increase in cytosolic calcium and activation of PKC. Here we review recent developments in the area of these cardiotrophic kinases, highlighting the utility of animal models that are helping to identify molecular targets in the human condition.

Authors

Gerald W. Dorn II, Thomas Force

×

Abstract

In response to acute and chronic stresses, the heart frequently undergoes a remodeling process that is accompanied by myocyte hypertrophy, impaired contractility, and pump failure, often culminating in sudden death. The existence of redundant signaling pathways that trigger heart failure poses challenges for therapeutic intervention. Cardiac remodeling is associated with the activation of a pathological gene program that weakens cardiac performance. Thus, targeting the disease process at the level of gene expression represents a potentially powerful therapeutic approach. In this review, we describe strategies for normalizing gene expression in the failing heart with small molecules that control signal transduction pathways directed at transcription factors and associated chromatin-modifying enzymes.

Authors

Timothy A. McKinsey, Eric N. Olson

×

No posts were found with this tag.