Review

Abstract

Alzheimer’s disease and related dementias (ADRD) are among the top contributors to disability and mortality in later life. As with many chronic conditions, aging is the single most influential factor in the development of ADRD. Even among older adults who remain free of dementia throughout their lives, cognitive decline and neurodegenerative changes are appreciable with advancing age, suggesting shared pathophysiological mechanisms. In this Review, we provide an overview of changes in cognition, brain morphology, and neuropathological protein accumulation across the lifespan in humans, with complementary and mechanistic evidence from animal models. Next, we highlight selected aging processes that are differentially regulated in neurodegenerative disease, including aberrant autophagy, mitochondrial dysfunction, cellular senescence, epigenetic changes, cerebrovascular dysfunction, inflammation, and lipid dysregulation. We summarize research across clinical and translational studies to link biological aging processes to underlying ADRD pathogenesis. Targeting fundamental processes underlying biological aging may represent a yet relatively unexplored avenue to attenuate both age-related cognitive decline and ADRD. Collaboration across the fields of geroscience and neuroscience, coupled with the development of new translational animal models that more closely align with human disease processes, is necessary to advance novel therapeutic discovery in this realm.

Authors

Mitzi M. Gonzales, Valentina R. Garbarino, Erin Pollet, Juan P. Palavicini, Dean L. Kellogg Jr., Ellen Kraig, Miranda E. Orr

×

Abstract

Cardiovascular disease (CVD) accounts for almost half of all deaths related to non-communicable disease worldwide, making it the single largest global cause of mortality. Although the risk factors for coronary artery disease — the most common cause of CVD — are well known and include hypertension, high cholesterol, age, and genetics, CVDs are now recognized as chronic inflammatory conditions. Arterial blockages, known as atherosclerosis, develop due to excess cholesterol accumulating within the arterial wall, creating a perpetually inflammatory state. The normally quiescent intimal layer of the vessel wall becomes laden with inflammatory cells, which alters the surrounding endothelial, smooth muscle, and extracellular matrix components to propagate disease. Macrophages, which can be either tissue resident or monocyte derived, are a key player in atherosclerotic disease progression and regression, and the understanding of their functions and origins continues to evolve with the use of deep phenotyping methodologies. This Review outlines how macrophages interact with each layer of the developing atherosclerotic plaque and discusses new concepts that are challenging our previous views on how macrophages function and our evolving understanding of the contribution of macrophages to disease.

Authors

Leah I. Susser, Katey J. Rayner

×

Abstract

Autosomal dominant disorders present unique challenges, as therapeutics must often distinguish between healthy and diseased alleles while maintaining high efficiency, specificity, and safety. For this task, CRISPR/Cas remains particularly promising. Various CRISPR/Cas systems, like homology-directed repair, base editors, and prime editors, have been demonstrated to selectively edit mutant alleles either by incorporating these mutations into sgRNA sequences (near the protospacer-adjacent motif [“near the PAM”]) or by targeting a novel PAM generated by the mutation (“in the PAM”). However, these probability-based designs are not always assured, necessitating generalized, mutation-agnostic strategies like ablate-and-replace and single-nucleotide polymorphism editing. Here, we detail recent advancements in CRISPR therapeutics to treat a wide range of autosomal dominant disorders and discuss how they are altering the landscape for future therapies.

Authors

Salvatore Marco Caruso, Peter M.J. Quinn, Bruna Lopes da Costa, Stephen H. Tsang

×

Abstract

The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.

Authors

Brendan Miller, Su-Jeong Kim, Hiroshi Kumagai, Kelvin Yen, Pinchas Cohen

×

Abstract

Targeted therapies have come to play an increasingly important role in cancer therapy over the past two decades. This success has been made possible in large part by technological advances in sequencing, which have greatly advanced our understanding of the mutational landscape of human cancer and the genetic drivers present in individual tumors. We are rapidly discovering a growing number of mutations that occur in targetable pathways, and thus tumor genetic testing has become an important component in the choice of appropriate therapies. Targeted therapy has dramatically transformed treatment outcomes and disease prognosis in some settings, whereas in other oncologic contexts, targeted approaches have yet to demonstrate considerable clinical efficacy. In this Review, we summarize the current knowledge of targetable mutations that occur in a range of cancers, including hematologic malignancies and solid tumors such as non–small cell lung cancer and breast cancer. We outline seminal examples of druggable mutations and targeting modalities and address the clinical and research challenges that must be overcome to maximize therapeutic benefit.

Authors

Michael R. Waarts, Aaron J. Stonestrom, Young C. Park, Ross L. Levine

×

Abstract

Next-generation sequencing (NGS) technology has advanced our understanding of the human microbiome by allowing for the discovery and characterization of unculturable microbes with prediction of their function. Key NGS methods include 16S rRNA gene sequencing, shotgun metagenomic sequencing, and RNA sequencing. The choice of which NGS methodology to pursue for a given purpose is often unclear for clinicians and researchers. In this Review, we describe the fundamentals of NGS, with a focus on 16S rRNA and shotgun metagenomic sequencing. We also discuss pros and cons of each methodology as well as important concepts in data variability, study design, and clinical metadata collection. We further present examples of how NGS studies of the human microbiome have advanced our understanding of human disease pathophysiology across diverse clinical contexts, including the development of diagnostics and therapeutics. Finally, we share insights as to how NGS might further be integrated into and advance microbiome research and clinical care in the coming years.

Authors

Caroline R. Wensel, Jennifer L. Pluznick, Steven L. Salzberg, Cynthia L. Sears

×

Abstract

Rare genetic disorders, when considered together, are relatively common. Despite advancements in genetics and genomics technologies as well as increased understanding of genomic function and dysfunction, many genetic diseases continue to be difficult to diagnose. The goal of this Review is to increase the familiarity of genetic testing strategies for non-genetics providers. As genetic testing is increasingly used in primary care, many subspecialty clinics, and various inpatient settings, it is important that non-genetics providers have a fundamental understanding of the strengths and weaknesses of various genetic testing strategies as well as develop an ability to interpret genetic testing results. We provide background on commonly used genetic testing approaches, give examples of phenotypes in which the various genetic testing approaches are used, describe types of genetic and genomic variations, cover challenges in variant identification, provide examples in which next-generation sequencing (NGS) failed to uncover the variant responsible for a disease, and discuss opportunities for continued improvement in the application of NGS clinically. As genetic testing becomes increasingly a part of all areas of medicine, familiarity with genetic testing approaches and result interpretation is vital to decrease the burden of undiagnosed disease.

Authors

Bryce A. Schuler, Erica T. Nelson, Mary Koziura, Joy D. Cogan, Rizwan Hamid, John A. Phillips III

×

Abstract

The COVID-19 pandemic has elevated mRNA vaccines to global recognition due to their unprecedented success rate in protecting against a deadly virus. This international success is underscored by the remarkable versatility, favorable immunogenicity, and overall safety of the mRNA platform in diverse populations. Although mRNA vaccines have been studied in preclinical models and patients with cancer for almost three decades, development has been slow. The recent technological advances responsible for the COVID-19 vaccines have potential implications for successfully adapting this vaccine platform for cancer therapeutics. Here we discuss the lessons learned along with the chemical, biologic, and immunologic adaptations needed to optimize mRNA technology to successfully treat cancers.

Authors

Amanda L. Huff, Elizabeth M. Jaffee, Neeha Zaidi

×

Abstract

Natural killer (NK) cells are innate immune cells that are critical to the body’s antitumor and antimetastatic defense. As such, novel therapies are being developed to utilize NK cells as part of a next generation of immunotherapies to treat patients with metastatic disease. Therefore, it is essential for us to examine how metastatic cancer cells and NK cells interact with each other throughout the metastatic cascade. In this Review, we highlight the recent body of work that has begun to answer these questions. We explore how the unique biology of cancer cells at each stage of metastasis alters fundamental NK cell biology, including how cancer cells can evade immunosurveillance and co-opt NK cells into cells that promote metastasis. We also discuss the translational potential of this knowledge.

Authors

Isaac S. Chan, Andrew J. Ewald

×

Abstract

Obesity has reached epidemic proportions and is a major contributor to insulin resistance (IR) and type 2 diabetes (T2D). Importantly, IR and T2D substantially increase the risk of cardiovascular (CV) disease. Although there are successful approaches to maintain glycemic control, there continue to be increased CV morbidity and mortality associated with metabolic disease. Therefore, there is an urgent need to understand the cellular and molecular processes that underlie cardiometabolic changes that occur during obesity so that optimal medical therapies can be designed to attenuate or prevent the sequelae of this disease. The vascular endothelium is in constant contact with the circulating milieu; thus, it is not surprising that obesity-driven elevations in lipids, glucose, and proinflammatory mediators induce endothelial dysfunction, vascular inflammation, and vascular remodeling in all segments of the vasculature. As cardiometabolic disease progresses, so do pathological changes in the entire vascular network, which can feed forward to exacerbate disease progression. Recent cellular and molecular data have implicated the vasculature as an initiating and instigating factor in the development of several cardiometabolic diseases. This Review discusses these findings in the context of atherosclerosis, IR and T2D, and heart failure with preserved ejection fraction. In addition, novel strategies to therapeutically target the vasculature to lessen cardiometabolic disease burden are introduced.

Authors

Nabil E. Boutagy, Abhishek K. Singh, William C. Sessa

×

No posts were found with this tag.